DOI QR코드

DOI QR Code

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu (Department of Architectural Engineering, College of Engineering, Sejong University) ;
  • Shin, Soomi (Research Institute of Industrial Technology, Pusan National University)
  • 투고 : 2013.07.05
  • 심사 : 2015.09.07
  • 발행 : 2015.09.25

초록

This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Belytschko, T., Xiao, S.P. and Parimi, C. (2003), "Topology optimization with implicit functions and regularization", Int. J. Numer. Meth. Eng., 57, 1177-1196. https://doi.org/10.1002/nme.824
  2. Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optim., 1, 193-202. https://doi.org/10.1007/BF01650949
  3. Bendsoe, M.P. and Haber, R. (1993), "The Michell layout problem as a low volume fraction limit of the homogenization method for topology design: an asymptotic study", Struct. Optim., 6, 263-267. https://doi.org/10.1007/BF01743385
  4. Bendsoe, M.P. and Sigmund, O. (1999), "Material Interpolations in topology optimization", Arch. Appl. Mech., 69, 635-654. https://doi.org/10.1007/s004190050248
  5. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  6. Berthelsen, P.A. (2002), "A short Introduction to the Level Set Method and Incompressible Two-Phase Flow, A Computational Approach", Technical Report, Department of Applied Mechanics, Thermodynamics and Fluid Dynamics, Norway University of Science and Technology.
  7. Bourdin, B. (2001), "Filters in topology optimization", Int. J. Numer. Meth. Eng., 50, 2143-2158. https://doi.org/10.1002/nme.116
  8. Diaz, A.R. and Bendsoe, M.P. (1992), "Shape optimization of structures for multiple loading conditions using a homogenization method", Struct. Optim., 4, 17-22. https://doi.org/10.1007/BF01894077
  9. Diaz, R.I. and Sigmund, O. (1995), "Checkerboards patterns in layout optimization", Struct. Optim., 10, 40-45. https://doi.org/10.1007/BF01743693
  10. Eschenauer, H.A., Kobelev, V.V. and Schmacher, A. (1994), "Bubble method for topology and shape optimization of structures", Struct. Optim., 8, 42-51. https://doi.org/10.1007/BF01742933
  11. Fujii, D., Chen, B.C. and Kikuchi, N. (2001), "Composite material design of two-dimensional structures using the homogenization design method", Int. J. Numer. Meth. Eng., 50, 2031-2051. https://doi.org/10.1002/nme.105
  12. Guest, J.K., Prevost, J.H. and Belytschko, T. (2004), "Achieving minimum length scale in topology optimization using nodal design variables and projection function", Int. J. Numer. Meth. Eng., 61, 238-254. https://doi.org/10.1002/nme.1064
  13. Haftka, R.T. and Guerdal, Z. (1992), Elements of Structural Optimization, Third Revised and Expanded Edition, Kluwer Academic Publishers.
  14. Haug, E.J., Choi, K.K. and Komkov, V. (1986), Design Sensitivity Analysis of Structural Systems, Academic Press Orlando, New York.
  15. Kawamoto, A., Matsumori, T., Yamasaki, S., Nomura, T., Kondoh, T. and Nishiwaki, S. (2011), "Heaviside projection based topology optimization by a PDE filtered scalar function", Struct. Multidisc. Optim., 44(1), 19-24. https://doi.org/10.1007/s00158-010-0562-2
  16. Kohn, R.V. and Strang, G. (1986), "Optimal design and relaxation of variational problems", Commun. Pure Appl. Math., 39, 113-137. https://doi.org/10.1002/cpa.3160390107
  17. Lee, D.K., Lee, J.H., Lee, K.H. and Ahn, N.S. (2014a), "Evaluating topological optimized layout of building structures by using nodal material density based bilinear interpolation", J. Asian Arch. Build. Eng., 13, 421-428. https://doi.org/10.3130/jaabe.13.421
  18. Lee, D.K., Shin, S.M., Lee, J.H. and Lee, K.H. (2015a), "Layout evaluation of building outrigger truss by using material topology optimization", Steel Compos. Struct., 19(2), 263-275. https://doi.org/10.12989/scs.2015.19.2.263
  19. Lee, D.K. and Shin, S.M. (2015b), "Extended-finite element method as analysis model for Gauss point density topology optimization method", J. Mech. Sci. Tech., 29(4), 1341-1348. https://doi.org/10.1007/s12206-015-0302-z
  20. Lee, D.K. and Shin, S.M. (2015c), "Optimising node density-based structural material topology using eigenvalue of thin steel and concrete plates", Mater. Res. Innov., 19(S5), 1241-1245. https://doi.org/10.1179/1432891715Z.0000000001478
  21. Moog, M. (2000), "Level set methods for hele-shaw flow", Ph.D Thesis, Department of Mathematics, University of Kaiserslautern.
  22. Osher, S. and Fedkiw, R. (2001), "Level set methods: An overview and some recent results", J. Comput. Phys., 169, 475-502.
  23. Osher, S. and Paragios, N. (2003), Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer Verlag.
  24. Patnaik, S.N., Guptill, J.D. and Berke, L. (2005), "Merits and limitations of optimality criteria method for structural optimization", Numer. Meth. Eng., 38(18), 3087-3120.
  25. Rozvany, G.I.N. (2001), "Aims, scope, methods, history and unified terminology of computer aided topology optimization in structural mechanics", Struct. Multidisc. Optim., 21, 90-108. https://doi.org/10.1007/s001580050174
  26. Rozvany, G.I.N., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct. Optim., 4, 250-252. https://doi.org/10.1007/BF01742754
  27. Sigmund, O. (1994), "Design of material structures using topology optimization", DCAMM Special Report No. 569, Technical University of Denmark.
  28. Sigmund, O. and Petersson, J. (1998), "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima", Struct. Optim., 16(1), 68-75. https://doi.org/10.1007/BF01214002
  29. Sigmund, O. (2001), "A 99 topology optimization code written in Matlab", Struct. Multidisc. Optim., 21, 120-127. https://doi.org/10.1007/s001580050176
  30. Wang, M.Y., Wang, X. M. and Guo, D.M. (2003), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Eng., 192(1-2), 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5
  31. Wang, X.M., Wang, M.Y. and Guo, D.M. (2004), "Structural shape and topology optimization in a level-set based framework of region representation", Struct. Multidisc. Optim., 27, 1-19. https://doi.org/10.1007/s00158-003-0363-y
  32. Zhu, B., Zhang, X. and Fatikow, S. (2015), "Structural topology and shape optimization using a level set method with distance-suppression scheme", Comput. Meth. Appl. Mech. Eng., 283, 1241-1239.
  33. Zienkiewicz, O.C. and Campbell, J.S. (1973), Shape Optimization and Sequential Linear Programming, Optimum Structural Design, Eds. Gallagher, R.H. and Zienkiewicz, O.C., 109-126.

피인용 문헌

  1. On the progressive collapse resistant optimal seismic design of steel frames vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.761
  2. Topology optimization of multi-directional variable thickness thin plate with multiple materials pp.1615-1488, 2019, https://doi.org/10.1007/s00158-018-2143-8
  3. Regularizing structural configurations by using meta-heuristic algorithms vol.12, pp.2, 2015, https://doi.org/10.12989/gae.2017.12.2.197
  4. Multi-material topology optimization of Reissner-Mindlin plates using MITC4 vol.27, pp.1, 2015, https://doi.org/10.12989/scs.2018.27.1.027
  5. Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory vol.22, pp.3, 2015, https://doi.org/10.12989/sss.2018.22.3.249
  6. Topological Optimal Material Design of Structures with Moved and Regularized Heaviside Function vol.44, pp.1, 2020, https://doi.org/10.1007/s40997-018-0241-2