DOI QR코드

DOI QR Code

Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders

  • Farahpour, Peyman (Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University) ;
  • Babaghasabha, Vahid (Young Researchers and Elite Club, Qazvin Branch, Islamic Azad University) ;
  • Khadem, Mahdi (Department of Mechanical Engineering, Yonsei University)
  • 투고 : 2014.08.25
  • 심사 : 2015.08.04
  • 발행 : 2015.09.25

초록

In this paper, the effect of functionally graded material (FGM) coatings on the fracture behavior of semi-elliptical cracks in cylinders is assessed. The objective is to calculate the stress intensity factor (SIF) of a longitudinal semi-elliptical crack on the wall of an aluminum cylinder with FGM coating. A three-dimensional finite element method (FEM) is used for constructing the mechanical models and analyzing the SIFs of cracks. The effect of many geometrical parameters such as relative depth, crack aspect ratio, FG coating thickness to liner thickness as well as the mechanical properties of the FG coating on the SIF of the cracks is discussed. For a special case, the validity of the FE model is examined. The results indicated that there is a particular crack aspect ratio in which the maximum value of SIFs changes from the deepest point to the surface point of the crack. Moreover, it was found that the SIFs decrease by increasing the thickness ratio of the cylinder. But, the cylinder length has no effect on the crack SIFs.

키워드

참고문헌

  1. Anlas, G., Santare, M.H. and Lambros, J. (2000), "Numerical calculation of stress intensity factors in functionally graded materials", Int. J. Fract., 104, 131-143. https://doi.org/10.1023/A:1007652711735
  2. ANSYS (2004), Theory Manual Version 9.0, Canonsburg, Pennsylvania, USA.
  3. Ayhan, A.O. (2007), "Stress intensity factor for three-dimensional cracks in functionally graded materials using enriched finite elements", Int. J. Solid. Struct., 44, 8579-8599. https://doi.org/10.1016/j.ijsolstr.2007.06.022
  4. Barsoum, R. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10, 25-37 https://doi.org/10.1002/nme.1620100103
  5. Chen, J., Wu, L. and Du, S. (2000), "A modified J integral for functionally graded materials", Mech. Res. Commun., 27(3), 301-306. https://doi.org/10.1016/S0093-6413(00)00096-3
  6. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50, 609-614. https://doi.org/10.1115/1.3167098
  7. Dolbow, J.E. and Gosz, M. (2002), "On the computation of mixed mode stress intensity factors in functionally graded materials", Int. J. Solid. Struct., 39, 2557-2574. https://doi.org/10.1016/S0020-7683(02)00114-2
  8. Eischen, J.W. (1987), "Fracture of nonhomogeneous materials", Int. J. Fract., 34, 3-22.
  9. Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", J. Appl. Mech., 64, 449-456. https://doi.org/10.1115/1.2788914
  10. Ghannad, M., Zamani Nejad, M., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
  11. Hosseini, S.M., Akhlaghi, M. and Shakeri, M. (2008), "Heat conduction and heat wave propagation in functionally graded thick hollow cylinder base on coupled thermo elasticity without energy dissipation", J. Heat Mass Tran., 44(12), 1477-84. https://doi.org/10.1007/s00231-008-0381-9
  12. Jin, Z.H. and Noda, N. (1994), "Crack-tip singular fields in nonhomogeneous materials", J. Appl. Mech., 61, 738-740. https://doi.org/10.1115/1.2901529
  13. Jin, Z.H. and Batra, R.C. (1996), "Some basic fracture mechanics concepts in functionally graded materials", J. Mech. Phys. Solid., 44, 1221-1235. https://doi.org/10.1016/0022-5096(96)00041-5
  14. Kheirikhah, M.M. and Khalili, S.M.R. (2011), "Fracture analysis of semi-elliptical cracks at the interface of two functionally gradient materials using 3D finite element method", J. Mater. Des. Appl., 225, 103-110.
  15. Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-35. https://doi.org/10.1002/nme.364
  16. Kim, J.H. and Paulino, G.H. (2002), "Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method", J. Eng. Fract. Mech., 69, 1557-1586. https://doi.org/10.1016/S0013-7944(02)00057-7
  17. Koizumi, M. (1997), "FGM activities in Japan", Compos. Book Eng., 28 (1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  18. Li, C. and Zou, Z. (1998), "Internally circumferentially cracked cylinders with functionally graded material properties", Int. J. Press. Ves. Pip., 75, 499-507. https://doi.org/10.1016/S0308-0161(98)00053-2
  19. Li, C., Zou, Z. and Duan, Z. (1999), "Stress intensity factors for functionally graded solid cylinders", J. Eng. Fract. Mech., 63, 735-749. https://doi.org/10.1016/S0013-7944(99)00045-4
  20. Li, Y., Zhang, H. and Tan, W. (2006), "Fracture analysis of functionally gradient weak/micro discontinuous interface with finite element method", J. Comput. Mater. Sci., 38, 454-458. https://doi.org/10.1016/j.commatsci.2006.04.005
  21. Li, X.F. and Peng, X.L. (2009), "A pressurized functionally graded hollow cylinder with arbitrarily varying material properties", J. Elast., 96, 81-95. https://doi.org/10.1007/s10659-009-9199-z
  22. Liew, K.M., Kitipornchai, S. and Zhang, X.Z. (2003), "Analysis of the thermal stress behavior of functionally graded hollow circular cylinders", Int. J. Solid. Struct., 40, 2355-2380. https://doi.org/10.1016/S0020-7683(03)00061-1
  23. Marur, P.R. and Tippur, H.V. (2000), "Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient", Int. J. Solid. Struct., 37, 53-70.
  24. Newman, J.C. and Raju, I.S. (1980), "Stress intensity factor for internal surface cracks in cylindrical pressure vessels", J. Press. Ves. Tech., 102, 342-346. https://doi.org/10.1115/1.3263343
  25. Newman, J.C. and Raju, I.S. (1982), "Stress intensity factor for internal and external surface cracks in cylindrical pressure vessels", J. Press. Ves. Tech., 104, 293-298. https://doi.org/10.1115/1.3264220
  26. Ozturk, M. and Erdogan, F. (1997), "Mode I crack problem in an inhomogeneous orthotropic medium", Int. J. Eng. Sci., 35(9), 869-83. https://doi.org/10.1016/S0020-7225(97)80005-5
  27. Ozturk, M. and Erdogan, F. (1999), "The mixed mode crack problem in an inhomogeneous orthotropic medium", Int. J. Fract., 98, 243-61. https://doi.org/10.1023/A:1018352203721
  28. Pan, E. and Roy, A.K. (2006), "A simple plane-strain solution for functionally graded multilayered isotropic cylinders", J. Struct. Eng. Mech., 24(6), 727-740. https://doi.org/10.12989/sem.2006.24.6.727
  29. Parameswaran, V. and Shukla, A. (2002), "Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials", J. Appl. Mech., 69, 240-243. https://doi.org/10.1115/1.1459072
  30. Shahani, A.R. and Kheirikhah, M.M. (2007), "Stress intensity factor calculation of steel lined hoop wrapped cylinders with internal semi-elliptical circumferential crack", J. Eng. Fract. Mech., 74, 2004-2013. https://doi.org/10.1016/j.engfracmech.2006.10.014
  31. Tutunc, U. (2007), "Stresses in thick-walled FGM cylinders with exponentially-varying properties", J. Eng. Struct., 29, 2032-2035. https://doi.org/10.1016/j.engstruct.2006.12.003
  32. Walters, M.C., Paulino, G.H. and Dodds, R.H. (2004), "Stress intensity factors for surface cracks in functionally graded materials under mode-I thermo mechanical loading", Int. J. Solid. Struct., 41, 1081-1118. https://doi.org/10.1016/j.ijsolstr.2003.09.050
  33. Walters, M.C., Paulino, G.H. and Dodds, R.H. (2006), "Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids", J. Eng. Mech., 132, 1-15. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(1)
  34. Yildirim, B., Dag, S. and Erdogan, F. (2005), "Three dimensional fracture analysis of FGM coatings under thermo mechanical loading", Int. J. Fract., 132, 369-395.
  35. Zimmerman R.W. and Lutz, M.P. (1999), "Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder", J. Therm. Stress, 22, 177-188. https://doi.org/10.1080/014957399280959

피인용 문헌

  1. Thermo-Mechanical Buckling of CFRP Cylindrical Shells with FGPM Coating pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419500160
  2. Failure Analyses of Propagation of Cracks in Repaired Pipe Under Internal Pressure vol.19, pp.1, 2019, https://doi.org/10.1007/s11668-019-00592-3
  3. Contact problem for a stringer plate weakened by a periodic system of variable width slots vol.62, pp.6, 2015, https://doi.org/10.12989/sem.2017.62.6.719
  4. Mode III SIFs for interface cracks in an FGM coating-substrate system vol.64, pp.1, 2015, https://doi.org/10.12989/sem.2017.64.1.071