DOI QR코드

DOI QR Code

A survey on the application of oxide nanoparticles for improving concrete processing

  • Khayati, Gholam Reza (Department of Materials Science and Engineering, Shahid Bahonar University of Kerman) ;
  • Ghasabe, Hojat Mirzaei (Department of Materials Science and Engineering, Shahid Bahonar University of Kerman) ;
  • Karfarma, Masoud (Department of Materials Science and Engineering, Shahid Bahonar University of Kerman)
  • 투고 : 2013.12.19
  • 심사 : 2015.09.17
  • 발행 : 2015.06.25

초록

The evolution of nanotechnology provides materials with advance properties. It's a fast growing area of research to introduce the oxide nanoparticles into the cement pastes to improve their performance. The purpose of this paper is to review the effects of oxide nanoparticles (such as $SiO_2$, $TiO_2$, $Fe_2O_3$, $ZnO_2$, $Cr_2O_3$ and $Al_2O_3$) on both of hardened concrete properties (i.e., compressive strength, split tensile strength and flexural strength, water permeability, Abrasion resistance and pore structure of concrete) and fresh concrete properties (i.e., workability and setting time). Graphical representations of all these parameters were presented to facilitate the comparison of the effect of oxide nanoparticles on concrete processing. The paper also introduces some discussion about future work in this direction by identifying some open research area.

키워드

참고문헌

  1. Aly, M., Hashmi, M.S.J., Olabi, A.G., Messeiry, M., Abadir, E.F. and Hussain, A.I. (2012), "Effect of colloidal nano-silica on the mechanical and physical behavior of waste-glass cement mortar", Mater. Des., 33, 127-135. https://doi.org/10.1016/j.matdes.2011.07.008
  2. Berra, M., Carassiti, F., Mangialardi, T., Paolini, A.E. and Sebastiani, M. (2012), "Effects of nanosilica addition on workability and compressive strength of Portland cement pastes", Constr. Build. Mater., 35, 666-675. https://doi.org/10.1016/j.conbuildmat.2012.04.132
  3. Bhuvaneshwari, B., Sasmal, S., Baskaran, T. and Nagesh, R.I. (2012), "Role of nano oxides for improving cementitious building materials", J. Civil. Eng. Sci., 1, 52-58.
  4. Bhuvaneshwari, B., Sasmal, S. and Nagesh, R.I., "Nanoscience to nanotechnology for civil engineering-proof of concepts", Recent Researches in Geography, Geology, 230-235.
  5. Byung, W.J., Chang, H.K. and Ghi, h.T. (2007), "Jong Bin P. Characteristics of cement mortar with nano-SiO2 particles", Constr. Build. Mater., 21, 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  6. Byung, W.J., Chang, H.K. and Jae, H.L. (2007), "Investigations on the development of powder concrete with Nano-$SiO_{2}$ particles", KSCE J. Civil Eng., 11, 37-42. https://doi.org/10.1007/BF02823370
  7. Cassar, L. (2005), "Nanotechnology and photocatalysis in cementitious materials", Nicom'2., 0-7.
  8. Chen, J., Kou, Sh.C. and Poon, Ch.S. (2012), "Hydration and properties of nano-$TiO_{2}$ blended cement composites", Cement Concrete Compos., 34, 642-649. https://doi.org/10.1016/j.cemconcomp.2012.02.009
  9. Diamantonis, N., Marinos, I., Katsiotis, M.S., Sakellariou, A., Papathanasiou, A., Kaloidas, V. and Katsioti, M. (2010), "Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete", Constr. Build. Mater., 24, 1518-1522. https://doi.org/10.1016/j.conbuildmat.2010.02.005
  10. Erdem, S., Dawson, A.R. and Howard Thom, N. (2012), "Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates", Cement Concrete Res., 42, 447-458. https://doi.org/10.1016/j.cemconres.2011.11.015
  11. Gaitero, J.J., Campillo, I. and Guerrero, A. (2008), "Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles", Cement Concrete Res., 38, 1112-1118. https://doi.org/10.1016/j.cemconres.2008.03.021
  12. Gopalakrishnan, K., Birgisson, B., Taylor, P. and Nii, O.A.O (2011), Nanotechnology In Civil Infrastructure, Springer, Berlin, Heidelberg, Germany.
  13. Hosseinpourpia, R., Varshoee, A., Soltani, M., Hosseini, P. and Ziaei Tabari, H. (2012), "Production of waste bio-fiber cement-based composites reinforced with nano-$SiO_{2}$ particles as a substitute for asbestos cement composites", Cement Concrete Res., 31, 105-111.
  14. Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing $SiO_{2}$ micro and nanoparticles", Mater. Des., 34, 389- 400. https://doi.org/10.1016/j.matdes.2011.08.037
  15. Jalal, M., Mortazavi, A.A. and Hassani, N. (2012), "Thermal properties of $TiO_{2}$ nanoparticles binary blended cementitious composites", J. Am. Sci., 8(7), 391-394.
  16. Jalal, M., Pouladkhan, A.R., Ramezanianpour, A.A. and Norouzi, H. (2012), "Effects of silica nanopowder and silica fume on rheology and strength of high strength self-compacting Concrete", J. Am. Sci., 8(4), 270-277.
  17. Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2", Cement Concrete Res., 35, 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004
  18. Khalaj, Gh. and Nazari, A. (2012), "Modeling split tensile strength of high strength self-compacting concrete incorporating randomly oriented steel fibers and $SiO_{2}$ nanoparticles", Compos. Part B-Eng., 43, 1887-1892. https://doi.org/10.1016/j.compositesb.2012.01.068
  19. Khanzadi, M., Tadayon, M., Sepehri, H. and Sepehri, M. (2010), "Influence of nano-silica particles on mechanical properties and permeability of concrete", Second International Conference on Sustainable Construction Mterials and Technologies, University of Politecnica delle Marche, Ancona.
  20. Khoshakhlagh, A., Nazari, A. and Khalaj, Gh. (2012), "Effects of Fe2O3 nanoparticles on water permeability and strength assessments of high strength self-compacting concrete", J. Mater. Sci. Technol., 28(1), 73-82. https://doi.org/10.1016/S1005-0302(12)60026-7
  21. Lackhoff, M., Prieto, X., Nestle, N., Dehnb, F. and Niessner, R. (2003), "Photocatalytic activity of semiconductor-modified cement influence of semiconductor type and cement ageing", Appl. Ccatal. B-Environ., 43, 205-216. https://doi.org/10.1016/S0926-3373(02)00303-X
  22. Lazaro, A. and Brouwers, H.J.H. (2010), "Nano-silica production by a sustainable process; application in building materials", 8th fib PhD Symposium in Kgs Lyngby, Denmark.
  23. Li, G. (2004), "Properties of high-volume fly ash concrete incorporating nano-$SiO_{2}$", Cement Concrete Res., 34, 1043-1049. https://doi.org/10.1016/j.cemconres.2003.11.013
  24. Li, H., Xiao, H.G. and Ou, J.P. (2004), "A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials", Cement Concrete Res., 34, 435-438. https://doi.org/10.1016/j.cemconres.2003.08.025
  25. Li, H., Xiao, H.G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Compos. Part B-Eng., 35, 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  26. Li, H., Zhang M.H. and Ou, J.P. (2007), "Flexural fatigue performance of concrete containing nano-particles for pavement", Int. J. Fatigue, 29, 1292-1301. https://doi.org/10.1016/j.ijfatigue.2006.10.004
  27. Li, H., Zhang, M.H. and Ou, J.P. (2006), "Abrasion resistance of concrete containing nano-particles for pavement", Wear., 260, 1262-1266. https://doi.org/10.1016/j.wear.2005.08.006
  28. Li, Z.H., Wang, H., He, A.Sh., Lu, Y. and Wang, M. (2006), "Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite", Mater. Lett., 60, 356-359. https://doi.org/10.1016/j.matlet.2005.08.061
  29. Lin, D.F., Lin, K.L., Chang, W.C., Luo, H.L. and Cai, M.Q. (2008), "Improvements of nano-$SiO_{2}$ on sludge/fly ash mortar", Waste Manage., 28, 1081-1087. https://doi.org/10.1016/j.wasman.2007.03.023
  30. Lin, K.L., Chang, W.C., Lin, D.F., Luo, H.L. and Tsai, M.C. (2008), "Effects of nano-$SiO_{2}$ and different ash particle sizes on sludge ash-cement mortar", J. Environ. Manage., 88, 708-714. https://doi.org/10.1016/j.jenvman.2007.03.036
  31. Liu, X., Chen, L., Liu, A. and Wang, X. (2012), "Effect of nano-$CaCO_{3}$ on properties of cement paste", Energy Procedia, 16, 991-996. https://doi.org/10.1016/j.egypro.2012.01.158
  32. Ltifi, M., Guefrech, A., Mounanga, P. and Khelidj, A. (2011), "Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars", Procedia Eng., 10, 900-905. https://doi.org/10.1016/j.proeng.2011.04.148
  33. Madandoust, R., Ranjbar, M.M. and Mousavi, S.Y. (2011), "An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene", Constr. Build. Mater., 25, 3721-3731. https://doi.org/10.1016/j.conbuildmat.2011.04.018
  34. Meng, T., Yu, Y., Qian, X., Zhan, S. and Qian, K. (2012), "Effect of nano-$TiO_{2}$ on the mechanical properties of cement mortar", Constr. Build. Mater., 29, 241-245. https://doi.org/10.1016/j.conbuildmat.2011.10.047
  35. Morsy, M.S., Al Salloum, Y.A., Abbas, H. and Alsayed, S.H. (2012), "Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures", Constr. Build. Mater., 35, 900-905. https://doi.org/10.1016/j.conbuildmat.2012.04.099
  36. Naji Givi, A.R., Abdul Rashid, S. and Nora, A.A.F. (2010), "Salleh A. M. M. Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete", Compos. Part B-Eng., 41, 673-677. https://doi.org/10.1016/j.compositesb.2010.08.003
  37. Naji Givi, A.R., Abdul Rashid, S., Nora, A.A.F. and Salleh A. M. M. (2011), "The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete", Compos. Part B-Eng., 42, 562-569 https://doi.org/10.1016/j.compositesb.2010.10.002
  38. Najigivi, A.R., Abdul Rashid, S., Nora, A.A.F. and Salleh A. M. M. (2012), "Water absorption control of ternary blended concrete with nano-$SiO_{2}$ in presence of rice husk ash", Mater. Struct., 45, 1007-1017. https://doi.org/10.1617/s11527-011-9813-y
  39. Nazari, A. (2011), "The effects of curing medium on flexural strength and water permeability of concrete incorporating $TiO_{2}$ nanoparticles", Mater. Struct., 44, 773-786. https://doi.org/10.1617/s11527-010-9664-y
  40. Nazari, A. and Riahi, Sh. (2010), "Microstructural, thermal, physical and mechanical behavior of the self-compacting concrete containing $SiO_{2}$ nanoparticles", Mater. Sci. Eng. A-Struct., 527, 7663-7672. https://doi.org/10.1016/j.msea.2010.08.095
  41. Nazari, A. and Riahi, Sh. (2010), "The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete", Mater. Sci. Eng. A-Struct., 528, 756-763. https://doi.org/10.1016/j.msea.2010.09.074
  42. Nazari, A. and Riahi, Sh. (2011), "Abrasion resistance of concrete containing $SiO_{2}$ and $Al_2O_3$ nanoparticles in different curing media", Energy Build., 43, 2939-2946. https://doi.org/10.1016/j.enbuild.2011.07.022
  43. Nazari, A. and Riahi, Sh. (2011), "$Al_2O_3$ nanoparticles in concrete and different curing media", Energy Build., 43, 1480-1488. https://doi.org/10.1016/j.enbuild.2011.02.018
  44. Nazari, A. and Riahi, Sh. (2011), "Computer-aided design of the effects of $Fe_2O_3$ nanoparticles on split tensile strength and water permeability of high strength concrete", Mater. Des., 32, 3966-3979. https://doi.org/10.1016/j.matdes.2011.01.064
  45. Nazari, A. and Riahi, Sh. (2011), "Effects of CuO nanoparticles on microstructure, physical, mechanical and thermal properties of self-compacting cementations composites", J. Mater. Sci. Technol., 27(1), 81-92. https://doi.org/10.1016/S1005-0302(11)60030-3
  46. Nazari, A. and Riahi, Sh. (2011), "Improvement compressive strength of concrete in different curing media by $Al_2O_3$ nanoparticles", Mater. Sci. Eng. A-Struct., 528, 1183-1191. https://doi.org/10.1016/j.msea.2010.09.098
  47. Nazari, A. and Riahi, Sh. (2011), "Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming", Compos. Part B-Eng., 42, 473-488. https://doi.org/10.1016/j.compositesb.2010.12.004
  48. Nazari, A. and Riahi, Sh. (2011), "Splitting tensile strength of concrete using ground granulated blast furnace slag and $SiO_{2}$ nanoparticles as binder", Energy Build., 43, 864-872. https://doi.org/10.1016/j.enbuild.2010.12.006
  49. Nazari, A. and Riahi, Sh. (2011), "The effects of $Cr_2O_3$ nanoparticles on strength assessments and water permeability of concrete in different curing media", Mater. Sci. Eng. A-Struct., 528, 1173-1182 https://doi.org/10.1016/j.msea.2010.09.099
  50. Nazari, A. and Riahi, Sh. (2011), "The effects of $SiO_{2}$ nanoparticles on physical and mechanical properties of high strength compacting concrete", Compos. Part B-Eng., 42, 570-578. https://doi.org/10.1016/j.compositesb.2010.09.025
  51. Nazari, A. and Riahi, Sh. (2011), "The effects of $TiO_{2}$ nanoparticles on physical, thermal and mechanical properties of concrete using ground granulated blast furnace slag as binder", Mater. Sci. Eng. A-Struct., 528, 2085-2092. https://doi.org/10.1016/j.msea.2010.11.070
  52. Nazari, A. and Riahi, Sh. (2011), "The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete", Compos. Part B-Eng., 42, 167-175. https://doi.org/10.1016/j.compositesb.2010.09.001
  53. Nazari, A. and Riahi, Sh. (2011), "The role of $SiO_{2}$ nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self-compacting concrete", Mater. Sci. Eng. A-Struct., 528, 2149-2157. https://doi.org/10.1016/j.msea.2010.11.064
  54. Nazari, A. and Riahi, Sh. (2011), "$TiO_{2}$ nanoparticles effects on physical, thermal and mechanical properties of self-compacting concrete with ground granulated blast furnace slag as binder", Energy Build., 43, 995-1002. https://doi.org/10.1016/j.enbuild.2010.12.025
  55. Nazari, A., Riahi, Sh., Riahi, Sh., Shamekhi, S.F. and Khademno, A. (2010), "Benefits of $Fe_2O_3$ nanoparticles in concrete mixing matrix", J. Am. Sci., 6(4), 102-106.
  56. Nazari, A., Riahi, Sh., Riahi, Sh., Shamekhi, S.F. and Khademno, A. (2010), "An investigation on the Strength and workability of cement based concrete performance by using $ZrO_2$ nanoparticles", J. Am. Sci., 6(4), 29-33.
  57. Oltulu, M. and Sahin, R. (2011), Single and combined effects of nano-$SiO_{2}$, nano-$Al_2O_3$ and nano-$Fe_2O_3$ powders on compressive strength and capillary permeability of cement mortar containing silica fume, Mater. Sci. Eng. A-Struct., 528, 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054
  58. Qing, Y., Zenall, Z., Li, SH. and Rongshen, CH. (2006), "Pozzolanic activity between Nano-$SiO_{2}$ and sSilica fume", J. Wuhan. Univ. Tech., Mater. Sci. Ed., 21, 153-157. https://doi.org/10.1007/BF02840907
  59. Qing, Y.E., Zenan, Z.H., Deyu, K. and Rongshen, C.H. (2007), "Influence of nano-$SiO_{2}$ addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21, 539-545 https://doi.org/10.1016/j.conbuildmat.2005.09.001
  60. Quercia, G. and Brouwers, H.J.H. (2010), "Application of nano-silica (nS) in concrete mixtures", 8th fib PhD Symposium in Kgs, Lyngby, Denmark.
  61. Quercia, G., Husken, G. and Brouwers, H.J.H. (2012), "Water demand of amorphous nano silica and its impact on the workability of cement paste", Cement Concrete Res., 42, 344-357. https://doi.org/10.1016/j.cemconres.2011.10.008
  62. Raiess Ghasemi, A.M., Parhizkar, T. and Ramezanianpour, A.A. (2010), "Influence of Colloidal Nano-$SiO_{2}$ Addition as Silica Fume Replacement Material in Properties of Concrete", Second International Conference on Sustainable Construction Mterials and Technologies, university of Politecnica delle Marche, Ancona.
  63. Riahi, Sh. and Nazari, A. (2011), "Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles", Energy Build., 43, 1977-1984. https://doi.org/10.1016/j.enbuild.2011.04.009
  64. Sadrmomtazi, A. and Barzegar, A. (2010), "Assessment of the effect of Nano-SiO2 on physical and mechanical properties of self-compacting concrete containing rice husk ash", Second International Conference on Sustainable Construction Mterials and Technologies, University of Politecnica dell, Marche, Ancona, June.
  65. Sadrmomtazi, A., Kheirkhah, F., Fasihi, A. and Haghi, A.K. (2010), "Properties of Rice Husk Ash Concrete Containing Nano-$SiO_{2}$", Second International Conference on Sustainable Construction Mterials and Technologies, University of Politecnica delle Marche, Ancona, June.
  66. Senff, L., Hotza, D., Lucas, S. and Ferreira, V.M. (2012), "Labrincha J.A. Effect of nano-$SiO_{2}$ and nano-$TiO_{2}$ addition on the rheological behavior and the hardened properties of cement mortars", Mater. Sci. Eng. A-Struct., 532, 354- 361. https://doi.org/10.1016/j.msea.2011.10.102
  67. Senff, L., Labrincha, A.J., Ferreira, M.V. and Hotza, D. (2009), "Repette W L. Effect of nano-silica on rheology and fresh properties of cement pastes and mortars", Constr. Build. Mater., 23, 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005
  68. Shebl, S.S., Allie, L., Morsy, M.S. and Aglan, H.A. (2009), "Mechanical behavior of activated nano silicate filled cement binders", J. Mater. Sci., 44, 1600-1606. https://doi.org/10.1007/s10853-008-3214-9
  69. Shekari, A.H. and Razzaghi, M.S. (2011), "Influence of nano particles on durability and mechanical properties of high performance concrete", Procedia Eng., 14, 3036-304. https://doi.org/10.1016/j.proeng.2011.07.382
  70. Shi, X., Xie, N., Fortune, K. and Gong, J. (2012), "Durability of steel reinforced concrete in chloride environments (An overview)", Constr. Build. Mater., 30, 125-138. https://doi.org/10.1016/j.conbuildmat.2011.12.038
  71. Soleymani, F. (2012), "The effects of $ZrO_2$ nanopowders on compressive damage and pore structure properties of concrete specimens", J. Am. Sci., 8(3), 738-744.
  72. Stefanidou, M. and Papayianni, I. (2012), "Influence of nano-$SiO_{2}$ on the Portland cement pastes", Compos. Part B-Eng., 1-5.
  73. Yuvaraj, S., Sujimohankumar, D., Dinesh, N. and Karthic, C. (2012), "Experimental research on improvement of concrete strength and enhancing the resisting property of corrosion and permeability by the use of nano silica flyashed concrete", Int. J. Emer. Tech. Adv. Eng., 2, 105-110.
  74. Zaki, S.I. and Ragab, K.S. (2009), "How nanotechnology can change concrete industry", 1st International Conference on Sustainable Built Environment Infrastructures in Developing Countries, ENSET Oran., Algeria, 407- 414.
  75. Zhang, M.H. and Islam, J. (2012), "Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag", Constr. Build. Mater., 29, 573-580. https://doi.org/10.1016/j.conbuildmat.2011.11.013
  76. Zhang, M.H., Islam, J. and Peethamparan, S. (2012), "Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag", Cement Concrete Compos., 34, 650-662. https://doi.org/10.1016/j.cemconcomp.2012.02.005
  77. Zhang, M.H. and Li, H. (2011), "Pore structure and chloride permeability of concrete containing nano-particles for pavement", Constr. Build. Mater., 25, 608-616. https://doi.org/10.1016/j.conbuildmat.2010.07.032

피인용 문헌

  1. Application of nanoparticles for strengthening wellbore cement-formation bonding vol.75, pp.None, 2015, https://doi.org/10.2516/ogst/2020052