References
- Adhikari, G., Petrini, L. and Calvi, G.M. (2010), "Application of direct displacement based design to long bridges", Bull. Earthq. Eng., 8(4), 897-919 https://doi.org/10.1007/s10518-010-9173-y
- Aoi, S., Kunugi, T. and Fujiwara, H. (2004), "Strong-motion seismograph network operated by NIED: K-NET and KiK-net", J. Jap. Ass. Earthq. Eng., 4(3), 65-74.
- Blewitt, G., Kreemer, C., Hammond, W.C., Plag, H.P., Stein, S. and Okal, E. (2006), "Rapid determination of Earthquake magnitude using GPS for Tsunami Warning Systems", Geophys. Res. Lett., 33, L11309. https://doi.org/10.1029/2006GL026145
- Boore, D.M. (2003), "Analog-to-digital conversion as a source of drifts in displacements derived from digital recording of ground acceleration", B. Seismol. Soc. Am., 93(5), 2017-2024. https://doi.org/10.1785/0120020239
- Boore, D.V. and Bommer, J.J. (2005), "Processing of strong-motion accelerograms: needs, options and consequences", Soil Dyn. Earthq. Eng., 25(2), 93-115. https://doi.org/10.1016/j.soildyn.2004.10.007
- Boore, D.M. (2005), "On pads and filters: Processing strong-motion records", Bull. Seism. Soc. Am., 95(2), 745-750. https://doi.org/10.1785/0120040160
- Bock, Y., Prawirodirdjo, L. and Melbourne, T., (2004), "Detection of arbitrary large dynamic ground motions with a dense high-rate GPS network", Geophys. Res. Lett., 31, L06604.
- Bock, Y., Melgar, D. and Crowell, B. (2011), "Real-time strong-motion broadband displacements from collocated GPS and accelerometers", B. Seismol. Soc. Am., 101(6), 2904-2925. https://doi.org/10.1785/0120110007
- Cauzzi, C. and Clinton, J. (2013), "A high-and low-noise model for high-quality strong-motion accelerometer stations", Earthq. Sp., 29(1), 85-102. https://doi.org/10.1193/1.4000107
- Chan, W.S., Xu, Y.L., Ding, X.L. and Dai, W.J. (2006), "An integrated GPS-accelerometer data processing technique for structural deformation monitoring", J. Geodesy., 80(12), 705-719. https://doi.org/10.1007/s00190-006-0092-2
- Chatzi, E.N. and Smyth, A.W. (2009), "The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing", Struct. Control. Health. Monint., 16, 99-123. https://doi.org/10.1002/stc.290
- Chatzi, E.N. and Fuggini, C. (2012), "Structural identification of a super-tall tower by GPS and accelerometer data fusion using a multi-rate Kalman filter", Life-cycle and Sustainability of Civil Infrastructure Systems . Proceedings of the 3rd Int. Symp. on Life-Cycle Civil Engineering, IALCCE, 2012.
- Chousianitis, K., Ganas, A. and Gianniou, M. (2013), "Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements", J. Geodyn., 71, 1-13. https://doi.org/10.1016/j.jog.2013.06.004
- Clinton, J.F. and Heaton, T.H. (2003), "Potential Advantages of a strong-motion velocity-meter over a strong-motion accelerometer", Seism. Res. Lett., 73(3), 332-342. https://doi.org/10.1785/gssrl.73.3.332
- Crowell, B.W., Bock, Y. and Squibb, M.B. (2009), "Earthquake early-warning using total displacement waveforms from real-time GPS networks", Seism. Res. Lett., 80(5), 772-782. https://doi.org/10.1785/gssrl.80.5.772
- Dach, R., Hugentobler, U., Meindl, M. and Fridez, P. (2007), The Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern, Switzerland.
- Dach, R., Brockmann, E., Schaer, S., Beutler, G., Meindl, M., Prange, L., Bock, H., Jaggi, A. and Ostini, L. (2009), "GNSS processing at CODE: status report", J. Geodesy., 83(3-4), 353-366. https://doi.org/10.1007/s00190-008-0281-2
- Emore, G.L., Haare, J.S., Choi, K., Larson, K.M. and Yamagiwa, A. (2007), "Recovering seismic displacement through combined use of 1-Hz GPS and strong-motion accelerometers", B. Seismol. Soc. Am., 97(2), 357-378 https://doi.org/10.1785/0120060153
- Feng, M.Q. (2009), "Application of structural health monitoring in civil infrastructure", Smart. Struct. Syst., 5(4), 469-482. https://doi.org/10.12989/sss.2009.5.4.469
- Feng, L., Newman, A., Farmer, G., Psimoulis, P. and Stiros, S. (2010), "Strong rupture, coseismic and postseismic response of the 2008 Mw 6.4 Patras Earthquake in Northwestern Pelopennese, Greece: An indicator for a new transform fault zone", Geoph. J. Int., 183(1), 103-110. https://doi.org/10.1111/j.1365-246X.2010.04747.x
- Ganas, A., Serpelloni, E., Drakatos, G., Kolligri, M., Adamis, I., Tsimis, C. and Batsi, E. (2009), "The Mw6.4 SW-achaia (Western Greece) earthquake of 8 June 2008: Seismological, field, GPS observations, and stress modeling", J. Earthq. Eng., 13(8), 1101-1124. https://doi.org/10.1080/13632460902933899
- Ge, M., Gendt, G., Rothacher, M., Shi, C. and Liu, J. (2008), "Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations", J. Geod., 82(7), 389-399. https://doi.org/10.1007/s00190-007-0187-4
- Geng, J., Teferle, F.N., Meng, X. and Dodson, A.H. (2011), "Towards PPP-RTK: Ambiquity resolution in real-time precise point positioning", Adv. Spac. Res., 47(10), 1664-1673. https://doi.org/10.1016/j.asr.2010.03.030
- Geng, J., Bock, Y., Melgar, D., Crowell, B.W. and Haase, J.S. (2013), "A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarn: Implications for earthquake early warning", Geoch. Geoph. Geosys., 14(7), 2124-2142 https://doi.org/10.1002/ggge.20144
- Geng, J., Melgar, D., Bock, Y., Pantoli, E. and Restrepo, J. (2013), "Recovering coseismic point ground tilts from collocated high-rate GPS and accelerometers", Geopysh. Res. Lett., 40(19), 5095-5100 https://doi.org/10.1002/grl.51001
- Giri, P. and Lee, J.R. (2013), "In-situ blade deflection monitoring of a wind turbine using a wireless laser displacement sensor device within the tower", Key Eng. Mat., 558, 84-91. https://doi.org/10.4028/www.scientific.net/KEM.558.84
- Houlie, N., Occhipinti, G., Shapiro, N., Lognonne, P. and Murakami, M. (2011), "New approach to detect seismic surface waves in 1Hz-sampled GPS time series", Sci. Rep., 1(44).
- Houlie, N., Dreger, D. and Kim, A. (2014), "GPS source solution of the 2004 Parkfield earthquake", Sci. Rep., 4, 3646.
- Joakinen, A., Feng, S., Schuster, W., Ochieng, W., Hide, C., Moore, T. and Hill, C. (2013), "Integrity monitoring of fixed ambiguity Precise Point Positioning (PPP) solutions", Geosp. Inf. Sc. 16(3), 141-148. https://doi.org/10.1080/10095020.2013.817111
- Kim, S. and Stewart, J.P. (2003), "Kinematic soil-structure interaction from strong-motion recordings", J. Geotech. Geoenv. Eng., 129, 323-335 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(323)
- Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y. and Okada, T. (2011), "A unified source model for the 2011 Tohoku earthquake", Earth. Plan. Sci. Lett., 310(3-4), 480-487. https://doi.org/10.1016/j.epsl.2011.09.009
- Kuyuk, H.S. and Allen, R.M. (2014), A threshold based earthquake early warning system: Quake Wave Vibration Report, Earthquake Early Warning System: Applications to the Ibero-Maghrebian Region, USA, 4-5 February 2014.
- Larson, K., Bodin, P. and Gomsberg, J. (2003), "Using 1-Hz GPS data to measure deformations caused by the denali fault earthquake", Science, 300, 1421-1424. https://doi.org/10.1126/science.1084531
- Mikami, A. and Stewart, J.P. (2008), "Effects of time series analysis protocols on transfer functions calculated from earthquake accelerograms", Soil Dyn. Earthq. Eng., 28, 695-706. https://doi.org/10.1016/j.soildyn.2007.10.018
- Miyazaki, S., Larson, K.M. and Choi, K. et al. (2004), "Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data", Geophys. Res. Lett., 31, L21603. https://doi.org/10.1029/2004GL021457
- Meng, X., Dodson, A.H. and Roberts, G.W. (2007), "Detecting bridge dynamics with GPS and triaxial accelerometers", Eng. Struct., 29, 3178-3184. https://doi.org/10.1016/j.engstruct.2007.03.012
- Meng, G., Ren, J., Su, X., Yang, Y., Zhu, Z., Ge, L. and Li, X. (2013), "Coseismic Deformation of the 2010 Mw 6.9 Yushu Earthquake Derived from GPS Data", Seismol. Res. Lett., 84(1), 57-64. https://doi.org/10.1785/0220120018
- Moschas, F. and Stiros, S. (2012), "Phase effect in time-stamped accelerometer measurements . An experimental approach", Int. J. Metrol. Qual. Eng., 3(3), 161-167. https://doi.org/10.1051/ijmqe/2012025
- Moschas, F. and Stiros, S. (2013), "Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments", Measurement., 46, 1488-1506. https://doi.org/10.1016/j.measurement.2012.12.015
- Moschas, F. and Stiros, S. (2014), "Three-dimensional dynamic deflections and natural frequencies of a stiff footbridge based on measurements of collocated sensors", Struct. Control. Health. Monit., 21(1), 23-42. https://doi.org/10.1002/stc.1547
- Moschas, F., Psimoulis, P. and Stiros, S. (2013), "GPS-RTS data fusion to overcome signal deficiencies in certain bridge dynamic monitoring projects", Smart. Struct. Syst., 12 (3-4), 251-269. https://doi.org/10.12989/sss.2013.12.3_4.251
- Moschas, F., Avallone, A., Saltogianni, V. and Stiros, S. (2014), "Strong-motion displacement waveforms using 10Hz PPP-GPS: an assessment based on free-oscillation experiments", Earthq. Eng. Struct. D., (in press).
- Panagiotakos, T.B. and Fardis, M.N. (1999), "Deformation-controlled earthquake resistant design of RC buildings", J. Earthq. Eng., 3(4), 495-518. https://doi.org/10.1080/13632469909350357
- Penucci, D., Calvi, G.M. and Sullivan, T.J., (2009), "Displacement-based design of precast walls with additional dampers", J. Earthq. Eng., 12(1), 109-131.
- Psimoulis, P. and Stiros, S. (2013), "Measuring deflections of a short-span railway bridge using a Robotic Total Station (RTS)", J. Bridge .Eng. -ASCE, 18(2), 182-185. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000334
- Psimoulis, P. and Stiros, S. (2012), "A supervised learning computer-based algorithm to derive the amplitude of oscillations of structures using noisy GPS and robotic theodolites (RTS) records", Comput. Struct., 92-93, 337-348. https://doi.org/10.1016/j.compstruc.2011.10.019
- Psimoulis, P. and Stiros, S. (2008), "Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures, Int. J. Comput.-Aided. Civ. Infr. Eng., 23, 389-403. https://doi.org/10.1111/j.1467-8667.2008.00547.x
- Psimoulis, P., Pytharouli, S., Karambalis, D. and Stiros, S. (2008), "Potential of GPS to measure frequencies of oscillation of engineering structures", J. Soun. Vib., 318, 606-623. https://doi.org/10.1016/j.jsv.2008.04.036
- Psimoulis, P.A., Houlie, N., Michel, C., Meindl, M., Rothacher, M., (2014), "Long-period surface motion of the multipatch Mw9.0 Tohoku-Oki earthquake", Geoph. J. Int., 199, 968-980. https://doi.org/10.1093/gji/ggu302
- Roberts, G.W., Meng, X. and Dodson, A.H. (2004), "Integrating a global positioning system and accelerometers to monitor deflection of bridges", J. Surv. Eng., 130(2), 65-72. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:2(65)
- Sadan, O.B., Petrini, L., Calvi, G.M., (2013), "Direct displacement-based seismic assessment procedure for multi-span reinforced concrete bridges with single column piers", Earthg. Eng. Struct. D., 42(7), 1031-1051 https://doi.org/10.1002/eqe.2257
- Sagiya, T., Kanamore, H., Yagi, Y., Yamada, M. and Mori, J. (2011), "Rebuilding seismology", Nature, 473, 146-148. https://doi.org/10.1038/473146a
- Sagiya, T. (2004), "A decade of GEONET: 1994-2003 . The continuous GPS observation in Japan and its impact on earthquake studies", Earth Planets Space., 56(8), xxix-xli https://doi.org/10.1186/BF03353077
- Stiros, S. (2008), "Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation", Soil Dyn. Earthq. Eng., 28, 415-420. https://doi.org/10.1016/j.soildyn.2007.07.004
- Suzuki, W., Aoi, S., Sekiguchi, H. and Kunugi, T. (2011), "Rupture process of the 2011 Tohoku-Oki megathrust earthquake (M9.0) inverted from strong-motion data", Geophys. Res. Lett., 38, L00G16.
- Wang, G., Boore, D.M., Tang, G. and Zhou, X. (2007), "Comparisons of ground motions from collocated and closely spaced one-sample-per-second Global Positioning System and accelerograph recordings of the 2003 M6.5 San Simeon, California, earthquake in the Parkfield Region", B. Seismol. Soc. Am., 97(1), 76-90. https://doi.org/10.1785/0120060053
- Wang G.Q., Boore D.M., Igel H. and Zhou X.Y. (2003), "Some observations on collocated and closely spaced strong ground-motion records of the 1999 Chi-Chi, Taiwan, earthquake", B. Seismol. Soc. Am., 93(2), 674-693. https://doi.org/10.1785/0120020045
- Wang, K. and Rothacher, M. (2013), "Ambiguity resolution for triple-frequency geometry-free and ionosphere-free combination tested with real data", J. Geodesy, 87(6), 539-553. https://doi.org/10.1007/s00190-013-0630-7
- Wang, R., Parolai, S., Ge, M., Jin, M., Walter, T.R. and Zschau, J. (2013), "The 2011 Mw 9.0 Tohoku earthquake: Comparison of GPS and strong-motion data", B. Seismol. Soc. Am., 103(28), 1336-1347. https://doi.org/10.1785/0120110264
- Wright, T., Houlie, N., Hildyard, M. and Iwabuchi, T. (2012), "Real-time, reliable magnitude for large earthquakes from 1Hz GPS precise point positioning: The 2011 Tohoku-Oki (Japan) earthquake", Geophys. Res. Lett., 39, L12302.
- Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q. and Yanagidani, T. (2013), "High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units", J. Geodesy, 87(4), 361-372. https://doi.org/10.1007/s00190-012-0606-z
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge", Measurement, 46(1), 420-432. https://doi.org/10.1016/j.measurement.2012.07.018
- Yue, H. and Lay, T. (2011), "Inversion of high-rate (1sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw9.1)", Geophys. Res. Lett., 38, L00G09.
Cited by
- Investigating multi-GNSS performance in the UK and China based on a zero-baseline measurement approach vol.102, 2017, https://doi.org/10.1016/j.measurement.2017.02.004
- Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests 2018, https://doi.org/10.1016/j.asr.2018.01.005
- Time and frequency domains response analyses of April 2015 Greece’s earthquake in the Nile Delta based on GNSS-PPP vol.9, pp.4, 2016, https://doi.org/10.1007/s12517-016-2343-8
- Vibration detection with 100 Hz GPS PVAT during a dynamic flight vol.59, pp.11, 2017, https://doi.org/10.1016/j.asr.2016.08.008
- Real-Time Magnitude Characterization of Large Earthquakes Using the Predominant Period Derived From 1 Hz GPS Data 2018, https://doi.org/10.1002/2017GL075816
- Using the signal-to-noise ratio of GPS records to detect motion of structures vol.25, pp.2, 2018, https://doi.org/10.1002/stc.2080
- Recent Advances of Structures Monitoring and Evaluation Using GPS-Time Series Monitoring Systems: A Review vol.6, pp.12, 2017, https://doi.org/10.3390/ijgi6120382
- Low cost bridge load test: Calculating bridge displacement from acceleration for load assessment calculations vol.143, 2017, https://doi.org/10.1016/j.engstruct.2017.04.021
- Peak horizontal vibrations from GPS response spectra in the epicentral areas of the 2016 earthquake in central Italy vol.9, pp.1, 2018, https://doi.org/10.1080/19475705.2018.1445665
- Evaluation of the high-rate GNSS-PPP method for vertical structural motion pp.1752-2706, 2018, https://doi.org/10.1080/00396265.2018.1534362
- Elastic period of vibration calculated experimentally in buildings hosting permanent GPS stations vol.17, pp.3, 2018, https://doi.org/10.1007/s11803-018-0466-5
- Integration of Single-Frequency GNSS and Strong-Motion Observations for Real-Time Earthquake Monitoring vol.10, pp.6, 2018, https://doi.org/10.3390/rs10060886
- Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China vol.23, pp.1, 2019, https://doi.org/10.1007/s10291-018-0808-9
- Detection of ground motions using high-rate GPS time-series vol.214, pp.2, 2018, https://doi.org/10.1093/gji/ggy198
- Real-time coseismic deformations from adaptively tight integration of high-rate GNSS and strong motion records vol.219, pp.3, 2019, https://doi.org/10.1093/gji/ggz397
- Combining GPS and accelerometers' records to capture torsional response of cylindrical tower vol.25, pp.1, 2015, https://doi.org/10.12989/sss.2020.25.1.111
- A Multiple Algorithm Approach to the Analysis of GNSS Coordinate Time Series for Detecting Geohazards and Anomalies vol.125, pp.2, 2020, https://doi.org/10.1029/2019jb018104
- Combined Study of a Significant Mine Collapse Based on Seismological and Geodetic Data-29 January 2019, Rudna Mine, Poland vol.12, pp.10, 2020, https://doi.org/10.3390/rs12101570
- A Novel Dynamical Filter Based on Multi-Epochs Least-Squares to Integrate the Carrier Phase and Pseudorange Observation for GNSS Measurement vol.12, pp.11, 2015, https://doi.org/10.3390/rs12111762