Acknowledgement
Supported by : National Natural Science Foundation of China, Science Foundation of Jiangsu Province of China
References
- Arangio, S. and Beck, J.L. (2012), "Bayesian neural networks for bridge integrity assessment", Struct. Control. Health., 19(1), 3-21. https://doi.org/10.1002/stc.420
- Azarbayejani, M., El-Osery, A.I., Choi, K.K. and Taha, M.R. (2008), "A probabilistic approach for optimal sensor allocation in structural health monitoring", Smart. Mater. Struct., 17(5), 055019. https://doi.org/10.1088/0964-1726/17/5/055019
- Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties I: Bayesian statistical framework", J. Eng. Mech. -ASCE, 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
- Bharat, T.V. (2008), "Agents based algorithms for design parameter estimation in contaminant transport inverse problems", IEEE Swarm Intelligence Symposium, USA, 1-7.
- Carne, T.G. and Dohmann, C.R. (1995), "A modal test design strategy for modal correlation", Proceedings of the 13th International Modal Analysis Conference, USA, 927-933.
- Chow, H.M., Lam, H.F., Yin, T. and Au, S.K. (2011), "Optimal sensor configuration of a typical transmission tower for the purpose of structural model updating", Struct. Control. Health., 18(3), 305-320. https://doi.org/10.1002/stc.372
- Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE. T. Evolut. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017
- Flynn, E.B. and Todd, M.D. (2010), "A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing", Mech. Syst. Signal. Pr., 24(4), 891-903. https://doi.org/10.1016/j.ymssp.2009.09.003
- Fonseca, C.M. and Fleming, P.J. (1995), "An overview of evolutionary algorithms in multiobjective optimization", Evolutionary Comput., 3(1), 1-16. https://doi.org/10.1162/evco.1995.3.1.1
- Friswell, M. and Mottershead, J. E. (1995), Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers.
- Gong, Q., Zhou, Y. and Luo, Q. (2011), "Hybrid artificial glowworm swarm optimization algorithm for solving multi-dimensional knapsack problem", Procedia Engineering, 15, 2880-2884. https://doi.org/10.1016/j.proeng.2011.08.542
- Hamming, R.W. (1950), "Error detecting and error correcting codes", Bell. System. Technical. J., 29(2), 147-160. https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
- Heredia-Zavoni, E. and Esteva, E.L. (1998), "Optimal instrumentation of uncertain structural systems subject to earthquake ground motions", Earthq. Eng. Struct. D., 27(4), 343-362. https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F
- Huang, K., Zhou, Y. and Wang, Y. (2011), "Niching glowworm swarm optimization algorithm with mating behavior", J. Inform.Comput. Sci,, 8, 4175-4184.
- Jaynes, E.T. (1978), "Where do we stand on maximum entropy", The maximum entropy formalism, 15, 118.
- Kammer, D.C. (1991), "Sensor placement for on-orbit modal identification and correlation of large space structures", J. Guid. Control. Dynam., 14(2), 251-259. https://doi.org/10.2514/3.20635
- Kang, F., Li, J.J. and Xu, Q. (2008), "Virus coevolution partheno-genetic algorithms for optimal sensor placement", Adv. Eng. Inform., 22(3), 362-370. https://doi.org/10.1016/j.aei.2008.02.001
- Kang, F., Li, J. and Li, H. (2013), "Artificial bee colony algorithm and pattern search hybridized for global optimization", Appl. Soft. Comput., 13(4), 1781-1791. https://doi.org/10.1016/j.asoc.2012.12.025
- Konak, A., Coit, D.W. and Smith, A.E. (2006), "Multi-objective optimization using genetic algorithms: A tutorial", Reliab. Eng. Syst. Safe, 91(9), 992-1007. https://doi.org/10.1016/j.ress.2005.11.018
- Krishnanand, K.N. and Ghose, D. (2005), "Detection of multiple source locations using a glowworm metaphor with applications to collective robotics", IEEE swarm intelligence symposium, California, USA, 84-91.
- Krishnanand, K.N. and Ghose, D. (2009), "Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions", Swarm Intelligence, 3(2), 87-124. https://doi.org/10.1007/s11721-008-0021-5
- Liao, W.H., Kao, Y. and Li, Y.S. (2011), "A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks", Expert Systems with Applications, 38(10), 12180-12188. https://doi.org/10.1016/j.eswa.2011.03.053
- Li, J. and Law, S.S. (2012a), "Damage identification of a target substructure with moving load excitation", Mech. Syst. Signal. Pr., 30, 78-90. https://doi.org/10.1016/j.ymssp.2012.02.002
- Li, J., Law, S.S. and Ding, Y. (2012b), "Substructure damage identification based on response reconstruction in frequency domain and model updating", Eng. Struct., 41, 270-284. https://doi.org/10.1016/j.engstruct.2012.03.035
- Mufti, A.A. (2002), "Structural health monitoring of innovative Canadian civil engineering structures", Struct. Health. Monit., 1(1), 89-103. https://doi.org/10.1177/147592170200100106
- Ngatchou, P.N., Fox, W.L. and El.Sharkawi, M.A. (2005), "Distributed sensor placement with sequential particle swarm optimization", Swarm Intelligence Symposium, Proceedings 2005 IEEE, 385-388.
- Nie, H., Shen, J. and Li, X. (2014), "Research on glowworm swarm optimization with ethnic division", J. Networks, 9(2), 458-465.
- Ntotsios, E., Christodoulou, K. and Papadimitriou, C. (2006), "Optimal sensor location methodology for structural identification and damage detection", Proceedings of the 3rd European Workshop on Structural Health Monitoring, Granada, Spain.
- Papadimitriou, C., Beck, J.L. and Au, S.K. (2000), "Entropy-based optimal sensor location for structural model updating", J. Vib. Control., 6(5), 781-800. https://doi.org/10.1177/107754630000600508
- Papadimitriou, C. (2004), "Optimal sensor placement methodology for parametric identification of structural systems", J. Sound. Vib., 278(4), 923-947. https://doi.org/10.1016/j.jsv.2003.10.063
- Papadimitriou, C. (2005), "Pareto optimal sensor locations for structural identification", Comput. Method. Appl. M., 194(12-16), 1655-1673. https://doi.org/10.1016/j.cma.2004.06.043
- Shi, Z.Y., Law, S.S. and Zhang, L.M. (2000), "Optimum sensor placement for structural damage detection", J. Eng. Mech. -ASCE, 126(11), 1173-1179. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:11(1173)
- Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control. Hlth., 11(4), 349-368. https://doi.org/10.1002/stc.48
- Udwadia, F.E. (1994), "Methodology for optimal sensor locations for parameter identification in dynamic systems", J. Eng. Mech.-ASCE, 120(3), 68-90.
- Yang, Y., Zhou, Y. and Gong, Q. (2010), "Hybrid artificial glowworm swarm optimization algorithm for solving system of nonlinear equations", J. Comput. Inform. Syst., 6(10), 3431-3438.
- Yao, L., Sethares, W.A. and Kammer, D C. (1993), "Sensor placement for on orbit modal identification via a genetic algorithm". AIAA J., 31(10), 1922-1928. https://doi.org/10.2514/3.11868
- Ye, S.Q. and Ni, Y.Q. (2012), "Information entropy based algorithm of sensor placement optimization for structural damage detection", Smart. Struct. Syst., 10(4-5), 443-458. https://doi.org/10.12989/sss.2012.10.4_5.443
- Yi, T.H., and Li, H.N. (2012), "Methodology developments in sensor placement for health monitoring of civil infrastructures", Int. J. Distrib. Sens. N., Article ID 612726
- Yi, T.H., Li, H.N. and Gu, M. (2011a), "Optimal sensor placement for health monitoring of high-rise structure based on genetic algorithm", Math. Probl. Eng., Article ID 395101.
- Yi, T.H., Li, H.N. and Gu, M. (2011b), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies. Struct. Des. Tall. Spec., 20(7), 881-900. https://doi.org/10.1002/tal.712
- Yi, T. H., Li, H. N. and Gu, M. (2013), "Recent research and applications of GPS-based monitoring technology for high-rise structures", Struct. Control. Health., 20(5), 649-670. https://doi.org/10.1002/stc.1501
- Yi, T.H., Li, H.N. and Zhang, X.D. (2012a). "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart. Mater. Struct., 21(10), 105033. https://doi.org/10.1088/0964-1726/21/10/105033
- Yi, T.H., Li, H.N. and Zhang, X.D. (2012b), "Sensor placement on Canton Tower for health monitoring using asynchronous-climb monkey algorithm", Smart. Mater. Struct., 21(12), 125023. https://doi.org/10.1088/0964-1726/21/12/125023
- Yuen, K.V., Katafygiotis, L.S., Papadimitriou, C. and Mickleborough, N.C. (2001), "Optimal sensor placement methodology for identification with unmeasured excitation," J. Dyn. Syst-T. Asme., 123(4), 677-686. https://doi.org/10.1115/1.1410929
- Zainal, N., Zain, A.M., Radzi, N.H.M. and Udin, A. (2013), "Glowworm swarm optimization (GSO) algorithm for optimization problems: A state-of-the-art review", Appl. Mech. Mater., 421, 507-511. https://doi.org/10.4028/www.scientific.net/AMM.421.507
- Zhou, G.D. and Yi, T.H. (2013a), "Recent developments on wireless sensor networks technology for bridge health monitoring", Math. Probl. Eng., Article ID 947867.
- Zhou, G.D. and Yi, T.H. (2013b), "Thermal load in large-scale bridges: a state-of-the-art review", Int. J. Distrib. Sens. N., Article ID 797650.
- Zhou, G.D. and Yi, T.H. (2013c), "The nonuniform node configuration of wireless sensor networks for long-span bridge health monitoring", Int. J. Distrib. Sens. N., Article ID 797650.
- Zhou, G.D. and Yi, T.H. (2013d), "The node arrangement methodology of wireless sensor networks for long-span bridge health monitoring", Int. J. Distrib. Sens. N., Article ID 865324.
- Zhou, Y., Zhou, G., Wang, Y. and Zhao, G. (2013), "A glowworm swarm optimization algorithm based tribes", Appl. Math. Inform. Sci., 7(2), 537-541. https://doi.org/10.12785/amis/072L24
Cited by
- Nested-Stacking Genetic Algorithm for the Optimal Placement of Sensors in Bridge 2018, https://doi.org/10.1093/comjnl/bxx105
- Improving the Polynomial Approximation of an Object Characteristic that is not Directly Measurable by Using Measurement Reduction vol.59, pp.10, 2017, https://doi.org/10.1007/s11018-017-1089-3
- Sensor optimization using a genetic algorithm for structural health monitoring in harsh environments vol.6, pp.3, 2016, https://doi.org/10.1007/s13349-016-0170-y
- Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids vol.25, pp.6, 2018, https://doi.org/10.1002/stc.2160
- Numerical Optimization and Cyber-Physical- Social Computing for Vibrations of the Elliptical Treadmill Based on GSO-BPNN Model vol.6, pp.2169-3536, 2018, https://doi.org/10.1109/ACCESS.2018.2799607
- A measuring system for determination of a cantilever beam support moment vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.431
- Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm vol.20, pp.6, 2015, https://doi.org/10.12989/sss.2017.20.6.769