참고문헌
- Advisory Council for Aviation Research and Innovation in Europe, ACARE http://www.acare4europe.org/sites/acare4europe.org/files/attachment/SRIA%20Volume%201.pdf
- Ameduri, S., Brindisi, A., Tiseo, B., Concilio A. and Pecora, R. (2013), "Optimization and integration of shape memory alloy (SMA)-based elastic actuators within a morphing flap architecture", J. Intell. Mat. Syst. Str., 23(4) 381-396. https://doi.org/10.1177/1045389X11428672
- Carruthers, A.C., Walker, S.M., Thomas, A.L.R. and Taylor, G.K. (2010), "Aerodynamics of aerofoil sections measured on a free-flying bird", J. Aerospace Eng., 224(8), 855-864.
- Concilio, A. and Ameduri, S. (2013), "Influence of structural architecture on linear shape memory alloy actuator performance and morphing system layout optimization", J. Intell. Mat. Syst. Str., 1045389X13517306, first published on-line, December 31, 2013.
- Daniele, E., De Fenza, A. and Della Vecchia, P. (2012), "Conceptual adaptive wing-tip design for pollution reductions", J. Intell. Mat. Syst. Str., 23(11), 1197-1212. https://doi.org/10.1177/1045389X12445030
- Dimino, I. and Concilio, A. (2013), "An adaptive control system for wing TE shape control", Proceedings of the SPIE International Conference on Smart Structures, San Diego, California, March.
- Grigorie, T.L., Popov, A.V., Botez, R.M., Mamou, M. and Mebarki, Y. (2011a), "On-off and proportional-integral controller for a morphing wing. part 1: actuation mechanism and control design", J. Aerospace Eng., 226(2), 131-145.
- Grigorie, T.L., Popov, A.V., Botez, R.M., Mamou, M. and Mebarki, Y. (2011b), "On-off and proportional- integral controller for a morphing wing. part 2: control validation - numerical simulations and experimental tests", J. Aerospace Eng., 226(2), 146-162.
- Langbein, S. and Welp, E.G. (2009), "One-module actuators based on partial activation of shape memory components", J. Mater. Eng.Perform., 18(5-6), 711-716. https://doi.org/10.1007/s11665-009-9383-0
- Lesieutre, G.A., Browne, J.A. and Frecker, M.I. (2011), "Scaling of performance, weight, and actuation of a 2-d compliant cellular frame structure for a morphing wing", J. Intell. Mat. Syst. Str., 22(10), 979-986. https://doi.org/10.1177/1045389X11412641
- Maheri, A. and Isikveren, A.T. (2011), "Design of a single-dof kinematic chain using hybrid GA-pattern search and sequential GA", J. Mech. Eng. Sci., 226(6), 1634-1643.
- Mcknight, G., Doty, R., Keefe, A., Herrera, G. and Henry, C. (2010), "Segmented reinforcement variable stiffness materials for reconfigurable surfaces", J. Intell. Mat. Syst. Str., 21(17), 1783-1793. https://doi.org/10.1177/1045389X10386399
- Nadar, A., Khan, R., Jagnade, P., Limje, P., Bhusari, N. and Singh, K. (2013), "Design and analysis of multi-section variable camber wing", Int. J. Mech. Eng. Robot., 1(1), 122-128.
- Olympio, K.R. and Gandhi, F. (2010), "Flexible skins for morphing aircraft using cellular honeycomb cores", J. Intell. Mat. Syst. Str., 21(17), 1719-1735. https://doi.org/10.1177/1045389X09350331
- Pecora, R., Amoroso, F., Magnifico, M. and Concilio, A. (2013), "Design and experimental validation of a morphing wing flap device", Proceedings of the 6th ECCOMAS Conference on Smart Structures and Materials, SMART2013, Turin, Italy, June.
- Smart Intelligent Aircraft Structures, SARISTU, http://www.saristu.eu
- Stanewsky, E. (2001), "Adaptive wing and flow control technology", Prog. Aerosp. Sci., 37(7), 583-667. https://doi.org/10.1016/S0376-0421(01)00017-3
- Tomassetti, G., Ameduri, S. and Carozza, A. (2011), "Innovative streamline-flow preserving actuation strategies for wing airfoil nose", Int. J. Struct. Integrity, 2(4), 437- 457. https://doi.org/10.1108/17579861111183939
- Wildschek, A., Havar, T. and Plotner, K. (2010), "An all-composite, all-electric, morphing trailing edge device for flight control on a blended-wing-body airliner", J. Aerospace Eng., 224(1), 1-9.
- Zhao, J.S., Ye, L., Chu, F. and Dai, J.S. (2012),"Synthesis and static analysis of the deployable frame for a morphing wing", J. Mech. Eng. Sci., 227(3), 565-579.
피인용 문헌
- Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing vol.30, pp.2, 2017, https://doi.org/10.1016/j.cja.2017.02.001
- Electro-Actuation System Strategy for a Morphing Flap vol.6, pp.1, 2015, https://doi.org/10.3390/aerospace6010001