참고문헌
- Akib S., Mohammadhassani M. and Jahangirzadeh A. (2014), "Application of ANFIS and LR in prediction of scour depth in bridges", Comput. Fluids., 91, 77-86. https://doi.org/10.1016/j.compfluid.2013.12.004
- Akrami S.A., El-Shafie A. and Jaafar O. (2013), "Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference sSystem (MANFIS)", Water Resour. Manag., 27(9), 3507-3523. https://doi.org/10.1007/s11269-013-0361-9
- Bilgehan, M. (2011), "Comparison of ANFIS and NN models-with a study in critical buckling load estimation", Appl. Soft Comput., 11(4), 3779-3791. https://doi.org/10.1016/j.asoc.2011.02.011
- Braestrup M.W. and Nielsen M.P. (1983), Plastic methods of analysis and design, In Handbook of Structural Concrete, London, Pitman.
- CIRIA Guide 2. (1977), Construction Industry research and Information association. the design of deep beams in reinforced concrete, Ove Arup & Partners London.
- Herrera, F. and Lozano, M. (2003), "Fuzzy adaptive genetic algorithm: design, taxonomy, and future directions", Soft Comput., 7(8), 545-562. https://doi.org/10.1007/s00500-002-0238-y
- Jang, J.S.R. (1993), "Adaptive network based fuzzy inference system", IEEE T. Syst., Man Cy., 23, 665-685. https://doi.org/10.1109/21.256541
- Kao, C.Y. and Hung, S.L. (2003), "Detection of structural damage via free vibration responses generated by approximating artificial neural networks", Comput. Struct., 81(28-29), 2631-2644. https://doi.org/10.1016/S0045-7949(03)00323-7
- Khaleie, S. and Fasanghari, M. (2012), "An intuitionistic fuzzy group decision making method using entropy and association coefficient", Soft Comput., 16(7), 1197-1211. https://doi.org/10.1007/s00500-012-0806-8
- Kong, F., Robins, P. and Cole, D. (1970), "Web reinforcement effects on deep beams", ACI Struct. J., 67(12), 1010-1017.
- Lin, C.T., Lin, C.T. and Lee, C.S.G. (1996), Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems, Prentice Hall PTR, 797.
- Lu, W.Y., Hwang, S.J. and Lin, I.J. (2010), "Deflection prediction for reinforced concrete deep beams", Comput. Concrete, 7(1), 1-16. https://doi.org/10.12989/cac.2010.7.1.001
- Mamdani, E. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. Man. Mach. Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
- Mashrei, M.A., Abdulrazzaq, N., Abdalla, T.Y. and Rahman, M.S. (2010), "Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members", Eng. Struct., 32(6), 1723-1734. https://doi.org/10.1016/j.engstruct.2010.02.024
- Mohammadhassani, M., Jumaat, M.Z., Jameel, M., Badiee, H. and Arguman, A. (2011), "Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams an experimental investigation", Nucl. Eng. Des., 241, 2060-2067. https://doi.org/10.1016/j.nucengdes.2011.02.022
- Mohammadhassani, M., Jumaat, M.Z., Ashour, A. and Mohameed, J. (2011a), "Failure modes and serviceability of high strength self compacting concrete deep beams", Eng. Fail. Anal., 18(8), 2272-2281. https://doi.org/10.1016/j.engfailanal.2011.08.003
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M. and Arumugam, A.M.S. (2013), "Application of Artificial Neural Network (ANN) and Linear Regressions (LR) in predicting the deflection of concrete deep beams", Comput. Concrete., 11(3).
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M., Hakim, S.J.S. and Zargar, M. (2013a), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., 45(3), 319-332.
- Moller, B., Liebschera, M., Schweizerhofb, K., Matternb, S. and Blankenhornb, G. (2008), "Structural collapse simulation under consideration of uncertainty - Improvement of numerical efficiency", Comput. Struct., 86(19-20), 1875-1884. https://doi.org/10.1016/j.compstruc.2008.04.011
- Nielsen, M.P. (1971), "On the strength of reinforced concrete discs. copenhagen, acta polytechnica scandinavica", Civil Engineering and Building Construction Series.
- Oh, J.K. and Shin, S.W. (2001), "Shear strength of reinforced high strength concrete deep beam", ACI Struct. J., 8, 164-173.
- Pal, M. and Deswal, S. (2011), "Support vector regression based shear strength modelling of deep beams", Comput. Struct., 89(13-14), 1430-1439. https://doi.org/10.1016/j.compstruc.2011.03.005
- Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate strength of reinforced concrete deep beams by neural networks", J. Struct. Eng. - ASCE, 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
- Smith, K.N. and Vantsiotis, A.S. (1982), "Shear strength of deep beams", Amarican concrete institute (ACI), 79, 201-213.
- Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling", IEEE T. Syst. Man Cy., 35, 116-132.
- Tan, K., Kong, F., Teng, S. and Guan, L. (1995), "High-strength concrete deep beams with effective span and shear span variations", ACI Struct. J., 92(4), 395-405.
- Tan, K., Kong, F., Teng, S. and Weng, L. (1997), "Effect of web reinforcement on high-strength concrete deep beams", ACI Struct. J., 94(5), 572-582.
- Tan, K. and Lu, H. (1999), "Shear behavior of large reinforced concrete deep beams and code comparisons", ACI Struct. J., 96(5), 836-845.
- Yang, K.H., Chung, H.S., Lee, E.T. and Eun, H.C. (2003), "Shear characteristics of high-strength concrete deep beams without shear reinforcements", Eng. Struct., 25(10), 1343-1352. https://doi.org/10.1016/S0141-0296(03)00110-X
- Yang, K., Eun, H., Lee, E. and Chung, H. (2006), "The influence of web openings on the structural behaviour of reinforced high-strength concrete deep beams", Eng. Struct., 28(13), 1825-1834. https://doi.org/10.1016/j.engstruct.2006.03.021
- Zadeh, L.A. (1965), "Fuzzy sets. Inform Control", 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zhang, N. and Tan, K.H. (2007), "Size effect in RC deep beams: Experimental investigation and STM verification", Eng. Struct., 29(12), 3241-3254. https://doi.org/10.1016/j.engstruct.2007.10.005
피인용 문헌
- Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.657
- Feasibility of imperialist competitive algorithm to predict the surface settlement induced by tunneling pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0641-3
- Applying two optimization techniques in evaluating tensile strength of granitic samples pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0645-z
- An intelligent based-model role to simulate the factor of safe slope by support vector regression pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0677-4
- Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance pp.1435-5663, 2019, https://doi.org/10.1007/s00366-019-00701-8
- An integral based fuzzy approach to evaluate waste materials for concrete vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.323
- Strengthening of bolted shear joints in industrialized ferrocement construction vol.28, pp.6, 2015, https://doi.org/10.12989/scs.2018.28.6.681
- Application of ANFIS technique on performance of C and L shaped angle shear connectors vol.22, pp.3, 2018, https://doi.org/10.12989/sss.2018.22.3.335
- Practical use of computational building information modeling in repairing and maintenance of hospital building- case study vol.22, pp.5, 2015, https://doi.org/10.12989/sss.2018.22.5.575
- Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping vol.30, pp.5, 2019, https://doi.org/10.12989/scs.2019.30.5.417
- Assessment of electronic system for e-patent application and economic growth prediction vol.520, pp.None, 2015, https://doi.org/10.1016/j.physa.2019.01.009
- Estimation of moment and rotation of steel rack connections using extreme learning machine vol.31, pp.5, 2015, https://doi.org/10.12989/scs.2019.31.5.427
- Moment-rotation prediction of precast beam-to-column connections using extreme learning machine vol.70, pp.5, 2015, https://doi.org/10.12989/sem.2019.70.5.639
- Intelligent design of retaining wall structures under dynamic conditions vol.31, pp.6, 2015, https://doi.org/10.12989/scs.2019.31.6.629
- Application of waste tire rubber aggregate in porous concrete vol.24, pp.4, 2015, https://doi.org/10.12989/sss.2019.24.4.553
- Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures vol.33, pp.3, 2015, https://doi.org/10.12989/scs.2019.33.3.319
- Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete vol.8, pp.3, 2015, https://doi.org/10.12989/acc.2019.8.3.225
- Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks vol.24, pp.5, 2019, https://doi.org/10.12989/cac.2019.24.5.469
- Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings vol.33, pp.4, 2019, https://doi.org/10.12989/scs.2019.33.4.569
- Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) vol.34, pp.1, 2015, https://doi.org/10.12989/scs.2020.34.1.155
- Depiction of concrete structures with seismic separation under faraway fault earthquakes vol.9, pp.1, 2020, https://doi.org/10.12989/acc.2020.9.1.071
- Optimizing reinforced concrete beams under different load cases and material mechanical properties using genetic algorithms vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.467
- Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm) vol.25, pp.2, 2015, https://doi.org/10.12989/sss.2020.25.2.183
- Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2015, https://doi.org/10.12989/scs.2020.34.5.743
- Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2015, https://doi.org/10.12989/scs.2020.34.5.743
- Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field vol.73, pp.5, 2015, https://doi.org/10.12989/sem.2020.73.5.565
- A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network vol.36, pp.2, 2015, https://doi.org/10.1007/s00366-019-00726-z
- Designing traceability information systems for processed apple products chain vol.475, pp.None, 2015, https://doi.org/10.1088/1755-1315/475/1/012055
- Prediction of Lateral Deflection of Small-Scale Piles Using Hybrid PSO-ANN Model vol.45, pp.5, 2015, https://doi.org/10.1007/s13369-019-04134-9
- Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations vol.18, pp.5, 2020, https://doi.org/10.12989/eas.2020.18.5.567
- Human development index in a context of human development: Review on the western Balkans countries vol.10, pp.9, 2015, https://doi.org/10.1002/brb3.1755
- Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques vol.36, pp.4, 2015, https://doi.org/10.1007/s00366-019-00768-3
- Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures vol.36, pp.4, 2015, https://doi.org/10.1007/s00366-019-00780-7
- Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan vol.26, pp.6, 2015, https://doi.org/10.12989/sss.2020.26.6.781