DOI QR코드

DOI QR Code

Fuzzy modelling approach for shear strength prediction of RC deep beams

  • Mohammadhassani, Mohammad (Department of Structural Engineering, University of Malaya) ;
  • Saleh, Aidi MD. (Malaysian public work department) ;
  • Suhatril, M (Department of Civil Engineering, University of Malaya) ;
  • Safa, M. (Department of Civil Engineering, University of Malaya)
  • Received : 2014.07.15
  • Accepted : 2014.12.30
  • Published : 2015.09.25

Abstract

This study discusses the use of Adaptive-Network-Based-Fuzzy-Inference-System (ANFIS) in predicting the shear strength of reinforced-concrete deep beams. 139 experimental data have been collected from renowned publications on simply supported high strength concrete deep beams. The results show that the ANFIS has strong potential as a feasible tool for predicting the shear strength of deep beams within the range of the considered input parameters. ANFIS's results are highly accurate, precise and therefore, more satisfactory. Based on the Sensitivity analysis, the shear span to depth ratio (a/d) and concrete cylinder strength ($f_c^{\prime}$) have major influence on the shear strength prediction of deep beams. The parametric study confirms the increase in shear strength of deep beams with an equal increase in the concrete strength and decrease in the shear span to-depth-ratio.

Keywords

References

  1. Akib S., Mohammadhassani M. and Jahangirzadeh A. (2014), "Application of ANFIS and LR in prediction of scour depth in bridges", Comput. Fluids., 91, 77-86. https://doi.org/10.1016/j.compfluid.2013.12.004
  2. Akrami S.A., El-Shafie A. and Jaafar O. (2013), "Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference sSystem (MANFIS)", Water Resour. Manag., 27(9), 3507-3523. https://doi.org/10.1007/s11269-013-0361-9
  3. Bilgehan, M. (2011), "Comparison of ANFIS and NN models-with a study in critical buckling load estimation", Appl. Soft Comput., 11(4), 3779-3791. https://doi.org/10.1016/j.asoc.2011.02.011
  4. Braestrup M.W. and Nielsen M.P. (1983), Plastic methods of analysis and design, In Handbook of Structural Concrete, London, Pitman.
  5. CIRIA Guide 2. (1977), Construction Industry research and Information association. the design of deep beams in reinforced concrete, Ove Arup & Partners London.
  6. Herrera, F. and Lozano, M. (2003), "Fuzzy adaptive genetic algorithm: design, taxonomy, and future directions", Soft Comput., 7(8), 545-562. https://doi.org/10.1007/s00500-002-0238-y
  7. Jang, J.S.R. (1993), "Adaptive network based fuzzy inference system", IEEE T. Syst., Man Cy., 23, 665-685. https://doi.org/10.1109/21.256541
  8. Kao, C.Y. and Hung, S.L. (2003), "Detection of structural damage via free vibration responses generated by approximating artificial neural networks", Comput. Struct., 81(28-29), 2631-2644. https://doi.org/10.1016/S0045-7949(03)00323-7
  9. Khaleie, S. and Fasanghari, M. (2012), "An intuitionistic fuzzy group decision making method using entropy and association coefficient", Soft Comput., 16(7), 1197-1211. https://doi.org/10.1007/s00500-012-0806-8
  10. Kong, F., Robins, P. and Cole, D. (1970), "Web reinforcement effects on deep beams", ACI Struct. J., 67(12), 1010-1017.
  11. Lin, C.T., Lin, C.T. and Lee, C.S.G. (1996), Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems, Prentice Hall PTR, 797.
  12. Lu, W.Y., Hwang, S.J. and Lin, I.J. (2010), "Deflection prediction for reinforced concrete deep beams", Comput. Concrete, 7(1), 1-16. https://doi.org/10.12989/cac.2010.7.1.001
  13. Mamdani, E. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. Man. Mach. Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  14. Mashrei, M.A., Abdulrazzaq, N., Abdalla, T.Y. and Rahman, M.S. (2010), "Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members", Eng. Struct., 32(6), 1723-1734. https://doi.org/10.1016/j.engstruct.2010.02.024
  15. Mohammadhassani, M., Jumaat, M.Z., Jameel, M., Badiee, H. and Arguman, A. (2011), "Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams an experimental investigation", Nucl. Eng. Des., 241, 2060-2067. https://doi.org/10.1016/j.nucengdes.2011.02.022
  16. Mohammadhassani, M., Jumaat, M.Z., Ashour, A. and Mohameed, J. (2011a), "Failure modes and serviceability of high strength self compacting concrete deep beams", Eng. Fail. Anal., 18(8), 2272-2281. https://doi.org/10.1016/j.engfailanal.2011.08.003
  17. Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M. and Arumugam, A.M.S. (2013), "Application of Artificial Neural Network (ANN) and Linear Regressions (LR) in predicting the deflection of concrete deep beams", Comput. Concrete., 11(3).
  18. Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M., Hakim, S.J.S. and Zargar, M. (2013a), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., 45(3), 319-332.
  19. Moller, B., Liebschera, M., Schweizerhofb, K., Matternb, S. and Blankenhornb, G. (2008), "Structural collapse simulation under consideration of uncertainty - Improvement of numerical efficiency", Comput. Struct., 86(19-20), 1875-1884. https://doi.org/10.1016/j.compstruc.2008.04.011
  20. Nielsen, M.P. (1971), "On the strength of reinforced concrete discs. copenhagen, acta polytechnica scandinavica", Civil Engineering and Building Construction Series.
  21. Oh, J.K. and Shin, S.W. (2001), "Shear strength of reinforced high strength concrete deep beam", ACI Struct. J., 8, 164-173.
  22. Pal, M. and Deswal, S. (2011), "Support vector regression based shear strength modelling of deep beams", Comput. Struct., 89(13-14), 1430-1439. https://doi.org/10.1016/j.compstruc.2011.03.005
  23. Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate strength of reinforced concrete deep beams by neural networks", J. Struct. Eng. - ASCE, 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818)
  24. Smith, K.N. and Vantsiotis, A.S. (1982), "Shear strength of deep beams", Amarican concrete institute (ACI), 79, 201-213.
  25. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling", IEEE T. Syst. Man Cy., 35, 116-132.
  26. Tan, K., Kong, F., Teng, S. and Guan, L. (1995), "High-strength concrete deep beams with effective span and shear span variations", ACI Struct. J., 92(4), 395-405.
  27. Tan, K., Kong, F., Teng, S. and Weng, L. (1997), "Effect of web reinforcement on high-strength concrete deep beams", ACI Struct. J., 94(5), 572-582.
  28. Tan, K. and Lu, H. (1999), "Shear behavior of large reinforced concrete deep beams and code comparisons", ACI Struct. J., 96(5), 836-845.
  29. Yang, K.H., Chung, H.S., Lee, E.T. and Eun, H.C. (2003), "Shear characteristics of high-strength concrete deep beams without shear reinforcements", Eng. Struct., 25(10), 1343-1352. https://doi.org/10.1016/S0141-0296(03)00110-X
  30. Yang, K., Eun, H., Lee, E. and Chung, H. (2006), "The influence of web openings on the structural behaviour of reinforced high-strength concrete deep beams", Eng. Struct., 28(13), 1825-1834. https://doi.org/10.1016/j.engstruct.2006.03.021
  31. Zadeh, L.A. (1965), "Fuzzy sets. Inform Control", 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  32. Zhang, N. and Tan, K.H. (2007), "Size effect in RC deep beams: Experimental investigation and STM verification", Eng. Struct., 29(12), 3241-3254. https://doi.org/10.1016/j.engstruct.2007.10.005

Cited by

  1. Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.657
  2. Feasibility of imperialist competitive algorithm to predict the surface settlement induced by tunneling pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0641-3
  3. Applying two optimization techniques in evaluating tensile strength of granitic samples pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0645-z
  4. An intelligent based-model role to simulate the factor of safe slope by support vector regression pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0677-4
  5. Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance pp.1435-5663, 2019, https://doi.org/10.1007/s00366-019-00701-8
  6. An integral based fuzzy approach to evaluate waste materials for concrete vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.323
  7. Strengthening of bolted shear joints in industrialized ferrocement construction vol.28, pp.6, 2015, https://doi.org/10.12989/scs.2018.28.6.681
  8. Application of ANFIS technique on performance of C and L shaped angle shear connectors vol.22, pp.3, 2018, https://doi.org/10.12989/sss.2018.22.3.335
  9. Practical use of computational building information modeling in repairing and maintenance of hospital building- case study vol.22, pp.5, 2015, https://doi.org/10.12989/sss.2018.22.5.575
  10. Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping vol.30, pp.5, 2019, https://doi.org/10.12989/scs.2019.30.5.417
  11. Assessment of electronic system for e-patent application and economic growth prediction vol.520, pp.None, 2015, https://doi.org/10.1016/j.physa.2019.01.009
  12. Estimation of moment and rotation of steel rack connections using extreme learning machine vol.31, pp.5, 2015, https://doi.org/10.12989/scs.2019.31.5.427
  13. Moment-rotation prediction of precast beam-to-column connections using extreme learning machine vol.70, pp.5, 2015, https://doi.org/10.12989/sem.2019.70.5.639
  14. Intelligent design of retaining wall structures under dynamic conditions vol.31, pp.6, 2015, https://doi.org/10.12989/scs.2019.31.6.629
  15. Application of waste tire rubber aggregate in porous concrete vol.24, pp.4, 2015, https://doi.org/10.12989/sss.2019.24.4.553
  16. Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures vol.33, pp.3, 2015, https://doi.org/10.12989/scs.2019.33.3.319
  17. Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete vol.8, pp.3, 2015, https://doi.org/10.12989/acc.2019.8.3.225
  18. Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks vol.24, pp.5, 2019, https://doi.org/10.12989/cac.2019.24.5.469
  19. Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings vol.33, pp.4, 2019, https://doi.org/10.12989/scs.2019.33.4.569
  20. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) vol.34, pp.1, 2015, https://doi.org/10.12989/scs.2020.34.1.155
  21. Depiction of concrete structures with seismic separation under faraway fault earthquakes vol.9, pp.1, 2020, https://doi.org/10.12989/acc.2020.9.1.071
  22. Optimizing reinforced concrete beams under different load cases and material mechanical properties using genetic algorithms vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.467
  23. Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm) vol.25, pp.2, 2015, https://doi.org/10.12989/sss.2020.25.2.183
  24. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2015, https://doi.org/10.12989/scs.2020.34.5.743
  25. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2015, https://doi.org/10.12989/scs.2020.34.5.743
  26. Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field vol.73, pp.5, 2015, https://doi.org/10.12989/sem.2020.73.5.565
  27. A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network vol.36, pp.2, 2015, https://doi.org/10.1007/s00366-019-00726-z
  28. Designing traceability information systems for processed apple products chain vol.475, pp.None, 2015, https://doi.org/10.1088/1755-1315/475/1/012055
  29. Prediction of Lateral Deflection of Small-Scale Piles Using Hybrid PSO-ANN Model vol.45, pp.5, 2015, https://doi.org/10.1007/s13369-019-04134-9
  30. Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations vol.18, pp.5, 2020, https://doi.org/10.12989/eas.2020.18.5.567
  31. Human development index in a context of human development: Review on the western Balkans countries vol.10, pp.9, 2015, https://doi.org/10.1002/brb3.1755
  32. Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques vol.36, pp.4, 2015, https://doi.org/10.1007/s00366-019-00768-3
  33. Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures vol.36, pp.4, 2015, https://doi.org/10.1007/s00366-019-00780-7
  34. Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan vol.26, pp.6, 2015, https://doi.org/10.12989/sss.2020.26.6.781