References
- Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with properties using various", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Benatta, M.A., Tounsi, A., Mechab, I. and Bachir Bouiadjra, M. (2009), "Mathematical solution for bending of short hybrid composite beams with variable fibers spacing", Appl. Math. Comput., 212(2), 337-348. https://doi.org/10.1016/j.amc.2009.02.030
- Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2011), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94(1), 68-74. https://doi.org/10.1016/j.compstruct.2011.07.016
- Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., Int. J., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., Int. J., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021
- Li, X.-F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Merazi, M., Hadji, L., Hassaine Dauadji, T., Tounsi, A. and Adda Bedia, E. (2015), "A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position", Geomech. Eng., Int. J., 8(3), 305-321. https://doi.org/10.12989/gae.2015.8.3.305
- Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
- Sallai, B.O., Tounsi, A., Mechab, I., Bachir, B.M., Meradjah, M. and Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Computat. Mater. Sci., 44(4), 1344-1350.
- Simsek, M. (2010a), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Simsek, M. (2010b), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Tai, H.T. and Vo, P.V. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-112. https://doi.org/10.1016/j.ast.2013.12.002
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023
-
Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of
$ZrO_2$ -NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2
Cited by
- On vibrations of porous nanotubes vol.125, 2018, https://doi.org/10.1016/j.ijengsci.2017.12.009
- Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations vol.10, pp.6, 2016, https://doi.org/10.12989/eas.2016.10.6.1429
- Static analysis of the FGM plate with porosities vol.21, pp.1, 2016, https://doi.org/10.12989/scs.2016.21.1.123
- A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.385
- Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate vol.7, pp.1, 2018, https://doi.org/10.12989/amr.2018.7.1.029
- Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2015, https://doi.org/10.12989/sem.2018.66.1.061
- Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2015, https://doi.org/10.12989/gae.2018.14.6.519
- Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2015, https://doi.org/10.12989/gae.2018.15.1.711
- Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2015, https://doi.org/10.12989/amr.2018.7.2.119
- A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2015, https://doi.org/10.12989/anr.2018.6.2.147
- On the elastic parameters of the strained media vol.67, pp.1, 2015, https://doi.org/10.12989/sem.2018.67.1.053
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2015, https://doi.org/10.12989/was.2018.27.1.059
- Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach vol.16, pp.4, 2015, https://doi.org/10.12989/gae.2018.16.4.355
- Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2015, https://doi.org/10.12989/was.2019.28.1.019
- Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections vol.17, pp.2, 2019, https://doi.org/10.12989/gae.2019.17.2.175
- Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2015, https://doi.org/10.12989/eas.2019.16.5.601
- Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites vol.8, pp.3, 2015, https://doi.org/10.12989/amr.2019.8.3.219
- Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations vol.72, pp.1, 2015, https://doi.org/10.12989/sem.2019.72.1.061
- A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations vol.22, pp.5, 2015, https://doi.org/10.12989/gae.2020.22.5.415
- Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.285
- Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2015, https://doi.org/10.12989/gae.2021.24.1.091
- Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2015, https://doi.org/10.12989/acd.2021.6.2.117