DOI QR코드

DOI QR Code

Dependence of Alternating Magnetic Field Intensity on Proliferation Rate of Human Breast Cancer Cell

  • Park, Hyeji (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Hyun Sook (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Hwang, Do Guwn (Department of Oriental Biomedical Engineering, Sangji University)
  • Received : 2015.08.13
  • Accepted : 2015.09.16
  • Published : 2015.09.30

Abstract

To investigate the effects of alternating magnetic field intensity and stimulation time on the proliferation of human breast cancer cells (BT-20), we cultured the cells under a magnetic field with a saw tooth waveform of 2 kHz. The field intensities varied from 3 to 7 mT, and the stimulation time varied from 24 to 72 hours. Cell proliferation decreased dramatically to 40% during magnetic stimulation for 72 hours at 5 mT. However, the cells were not affected by a strong magnetic field of 7 mT. The p-values obtained using statistical package for social science software were below 0.05 for 5-7 mT. This means that the results have statistical significance. However, it is difficult to explain our results based on the physiology of cell membranes, which have various ionic flows at ion channels.

Keywords

References

  1. D. Fixler, S. Yitzhaki, A. Axelrod, T. Zinman, and A. Shainberg, Bioelectromagnetics 33, 634 (2012). https://doi.org/10.1002/bem.21729
  2. D. Dallari, M. Fini, G. Giavaresi, N. Del Piccolo, C. Stagni, L. Amendola, N. Rani, S. Gnudi, and R. Giardino, Bioelectromagnetics 30, 423 (2009). https://doi.org/10.1002/bem.20492
  3. T. Wang, Y. Nie, S. Zhao, Y. Han, Y. Du, and Y. Hou, Bioelectromagnetics 32, 443 (2011). https://doi.org/10.1002/bem.20654
  4. I. Hilger, W. Andra, R. Hergt, R. Hiergeist, H. Schubert, and W. A. Kaiser, Radiology 218, 570 (2001). https://doi.org/10.1148/radiology.218.2.r01fe19570
  5. X. Wang, Y. Chen, C. Huang, X. Wang, L. Zhao, X. Zhang, and J. Tang, Bioelectromagnetics 34, 95 (2013). https://doi.org/10.1002/bem.21761
  6. J. Liang, A. W. Mok, Y. Zhu, and J. Shi, Bioelectrochemistry 94, 61 (2013). https://doi.org/10.1016/j.bioelechem.2013.06.001
  7. M. A. Vander Molen, H. J. Donahue, C. T. Rubin, and K. J. McLeod, Bone 27, 227 (2000). https://doi.org/10.1016/S8756-3282(00)00315-X
  8. M. T. Tsai, W. J. Li, R. S. Tuan, and W. H. Chang, J. Orthopaedic Research 27, 1169 (2009). https://doi.org/10.1002/jor.20862
  9. T. S. Jang, J. Y. Lee, H. S. Lee, S. Kim, and D. G. Hwang, J. Magnetics 17, 42 (2012). https://doi.org/10.4283/JMAG.2012.17.1.042
  10. C. N. Gutt, Z. G. Kim, D. Hollander, and T. Bruttel, Clinical Cancer Research 9, 1474 (2003).
  11. N. J. Salkind, Encyclopedia of Measurement and Statistics 3, SAGE Publications, CA (2007) pp. 889-891.

Cited by

  1. Expression in the Spleen vol.38, pp.10, 2018, https://doi.org/10.1089/jir.2018.0048