DOI QR코드

DOI QR Code

Thermo-sensitive Electrospun Fibrous Magnetic Composite Sheets

  • Choi, Jungsu (Department of Materials Engineering, University of British Columbia) ;
  • Kim, Jinu (Department of Physics, Yeungnam University) ;
  • Yang, Heejae (Department of Materials Engineering, University of British Columbia) ;
  • Ko, Frank K. (Department of Materials Engineering, University of British Columbia) ;
  • Kim, Ki Hyeon (Department of Physics, Yeungnam University)
  • Received : 2015.08.11
  • Accepted : 2015.08.29
  • Published : 2015.09.30

Abstract

The PVDF fibrous composite filled with iron oxide nanoparticles were prepared by using the electrospinning technique. The electrospun composite have the thickness in the range of $60-80{\mu}m$ with the average fibrous diameters of 500-900 nm. The magnetizations of PVDF fibrous composite filled with iron oxide nanoparticles showed 4.5 emu/g, 3.1 emu/g and 1.6 emu/g at 1.5 T of external magnetic field for 20 wt.%, 10 wt.% and 5 wt.% iron oxide nanoparticles, respectively. The heat elevation of the magnetic composite were measured under various AC magnetic fields, frequency and the ambient temperatures. The temperature reached up to $46.3^{\circ}C$ from $36^{\circ}C$ at 128 Oe and 355 kHz for 20 wt.% iron oxide nanoparticles filled in PVDF fibrous composite sheet. The specific absorption rate of theses sheets increased from 0.041 W/g to 0.236 W/g with the increment of AC magnetic field from 90 Oe to 167 Oe at 190 kHz, respectively.

Keywords

References

  1. D.-H. Kim, D. E. Nikles, D. T. Johnson, and C. S. Brazel, J. Magn. Magn. Mater. 320, 2390 (2008). https://doi.org/10.1016/j.jmmm.2008.05.023
  2. S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, and E. Duguet, Prog. Solid State Chem. 34, 237 (2006). https://doi.org/10.1016/j.progsolidstchem.2005.11.010
  3. C. C. Berry and A. S. G. Curtis, J. Phys. D: Appl. Phys. 36, R198 (2003). https://doi.org/10.1088/0022-3727/36/13/203
  4. I. Baker, Q. Zeng, W. Li, and C. R. Sullivan, J. Appl. Phys. 99, 08H106 (2006). https://doi.org/10.1063/1.2171960
  5. C. Sun, J. S. H. Lee, and M. Zhang, Advanced Drug Delivery Reviews 60, 1252 (2008). https://doi.org/10.1016/j.addr.2008.03.018
  6. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012
  7. D. Caruntu, G. Caruntu, and C. J. O'Conner, J. Phys. D 40, 5801 (2007). https://doi.org/10.1088/0022-3727/40/19/001
  8. M. Thankur, K. De, S. Giri, S. Si, A. Kotal, and R. K. Mandal, J. Phys.:Condens. Matter. 18, 9093 (2005).
  9. T.-C. Lin, F.-H. Lin, and J.-C. Lin, Acta Biomater. 8, 2704 (2012). https://doi.org/10.1016/j.actbio.2012.03.045
  10. J. Kim, S. Zhu, Y. X. Gan, and K. Forward, Adv. Res. 3, 84 (2015). https://doi.org/10.9734/AIR/2015/13547
  11. C. Huang, S. J. Soenen, J. Rejman, J. Trekker, L. Chengxun, L. Lagae, W. Ceelen, C. Wilhelm, J. Demeester, and S. C. De Smedt, Adv. Funct. Mater. 22, 2479 (2012). https://doi.org/10.1002/adfm.201102171
  12. H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan, Chem. Mater. 3, 3506 (2007).
  13. M. Miyauchi, T. J. Simmons, J. Miao, J. E. Gagner, Z. H. Shriver, U. Aich, J. S. Dordick, and R. J. Linhardt, ACS Appl. Mater. Interfaces 19, 1958 (2011).
  14. C.-H. Park, S.-J. Kang, L. Tijing, H. R. Pant, and C. S. Kim, Ceram. Int. 39, 9785 (2013). https://doi.org/10.1016/j.ceramint.2013.05.042
  15. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv. 28, 325 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004
  16. Andrzej Skumiel, J. Magn. Magn. Mater. 307, 85 (2006). https://doi.org/10.1016/j.jmmm.2006.03.045