DOI QR코드

DOI QR Code

Optimization of Culture Condition for Enhancing the Probiotics Functions

프로바이오틱스의 기능성 향상을 위한 배양법

  • Chang, Bo Yoon (Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University) ;
  • Han, Ji Hye (Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University) ;
  • Cha, Bum-Suk (Young Science Scharlau Korea, Jeonnam Biotechnology Research Center) ;
  • Ann, Sung-Ho (Young Science Scharlau Korea, Jeonnam Biotechnology Research Center) ;
  • Kim, Sung Yeon (Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University)
  • 장보윤 (원광대학교 약학대학 약품연구소) ;
  • 한지혜 (원광대학교 약학대학 약품연구소) ;
  • 차범석 (영사이언스샬라우코리아) ;
  • 안상호 (영사이언스샬라우코리아) ;
  • 김성연 (원광대학교 약학대학 약품연구소)
  • Received : 2015.07.10
  • Accepted : 2015.09.09
  • Published : 2015.09.30

Abstract

The functions of probiotics, particularly Lactic acid bacteria, have been studied in a range of human diseases, including cancer, infectious diseases, gastrointestinal disorders, and allergies. Among the many benefits associated with the consumption of probiotics, modulation of immune activity has received the most attention. This study aimed at investigating the improved immune stimulatory and stability of L. plantarum when cultivated on modified basal media supplemented with the Undaria pinnatifida co-cultured with L. plantarum. An in vitro test showed that U. pinnatifida media cultured L. plantarum is strong enough to survive in the gastric juice (gastric and bile acid). Mouse macrophage-derived cell lines RAW 264.7 was used to measured immune stimulating activity of L. plantarum. When U. pinnatifida media cultured by L. plantarum was NO and $TNF-{\alpha}$ production is significantly increased compared to basal media cultured L. plantarum. These results show that U. pinnatifida could be applied for a component for cultivation of L. plantarum. This optimized U. pinnatifida medium can be used the improving of stability and immune function on production of probiotics.

본 연구에서는 식물성 프로바이오틱스에 해조류인 미역을 첨가하여 프로바이오틱스의 체내 안정성 및 면역원성을 향상 시킬 수 있는 고농도 배양법을 개발하고자 하였다. 미역 첨가 배지를 생산 수준으로 유산균을 배양하였을 때 유산균수는 18시간째 $10^{22}$, 24시간째 $100^9$으로 고농도 배양이 가능하였다. 미역첨가배지로 배양된 유산균의 열 안정성, 위산 및 담즙 안정성의 효과도 기본배지와 비교 하여 유의적인 증가를 확인할 수 있었다. 미역첨가배지로 배양된 프로바이오틱스는 생균 및 사균 모두 면역증강효과를 나타내는 것을 알 수 있었다. 배양만으로 기능성이 향상된 프리바이오틱스를 개발함에 따라, 다양한 프로바이오틱스의 기능성 향상의 기반 기술로서 활용이 가능할 것으로 사료 된다.

Keywords

References

  1. DeKivit, S., Tobin, M.C., Forsyth, C.B., Keshavarzian, A. and Landay, A.L.: Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro-and Prebiotics. Front Immunol. 18, 60-66 (2014).
  2. Rolfe, R.D.: The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130, 396-402 (2000). https://doi.org/10.1093/jn/130.2.396S
  3. Kang, K.H.: Health Benefits of Lactic Acid Bacteria. Curr. Top LAB Probiotics. 1, 1-8 (2013).
  4. Ghouri, Y.A., Richards, D.M., Rahimi, E.F., Krill, J.T., Jelinek, K.A. and DuPont, A.W.: Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol. 9, 473-487 (2014).
  5. Vander, M.J., Hulst, M.M., Smits, M.A. and Schuurman, T.: Small intestinal segment perfusion test in piglets: future applications in studying probiotics-gut crosstalk in infectious diarrhoea. Benef. Microbes. 1, 439-445 (2010). https://doi.org/10.3920/BM2010.0025
  6. Iebba. V., Nicoletti, M. and Schippa, S.: Gut microbiota and the immune system: an intimate partnership in health and disease. Int. J. Immunopathol. Pharmacol. 25, 823-833 (2012). https://doi.org/10.1177/039463201202500401
  7. Bansal, S., Mangal, M., Sharma, S.K. and Gupta, R.K.: Non-Dairy Based Probiotics: A Healthy Treat for Intestine. Crit. Rev. Food Sci. Nutr. 43, 65-66 (2015).
  8. Garcia-Albiach, R., Pozuelo de Felipe, M.J., Angulo, S., Morosini, M.I., Bravo, D., Baquero, F. and del Campo, R.: Molecular analysis of yogurt containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in human intestinal microbiota. Am. J. Clin. Nutr. 87, 91-96 (2008). https://doi.org/10.1093/ajcn/87.1.91
  9. Jeun, J.1., Kim, S., Cho, S.Y., Jun, H.J., Park, H.J., Seo, J.G., Chung, M.J. and Lee, S.J.: Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition. 26, 321-330 (2010). https://doi.org/10.1016/j.nut.2009.04.011
  10. Jeong, E.J., Moon, D.W., Oh, J.S., Moon, J.S., Eom, H.J., Choi, H.S., Kim, C.S. and Han, N.S.: Composition optimization of cabbage extract medium for cell growth of Lactobacillus plantarum. Korean Soc. Biotechnol. Bioengineering J. 27, 347-351 (2012).
  11. Morrow, L.E., Gogineni, V. and Malesker, M.A.: Probiotic, prebiotic, and synbiotic use in critically ill patients. Curr. Opin. Crit. Care. 18, 186-191 (2012). https://doi.org/10.1097/MCC.0b013e3283514b17
  12. Passariello, A., Terrin, G., Cecere, G., Micillo, M., De Marco, G., Di Costanzo, M., Cosenza, L., Leone, L., Nocerino, R. and Canani, R.B.: Randomised clinical trial: efficacy of a new synbiotic formulation containing Lactobacillus paracasei B21060 plus arabinogalactan and xilooligosaccharides in children with acute diarrhoea. Aliment Pharmacol Ther. 35, 782-788 (2012). https://doi.org/10.1111/j.1365-2036.2012.05015.x
  13. Mugambi, M.N., Musekiwa, A., Lombard, M., Young, T. and Blaauw, R.: Probiotics, prebiotics infant formula use in preterm or low birth weight infants: a systematic review. Nutr. J. 28, 58-65 (2012).
  14. Im, YG., Choi, J.S. and Kim, D.S.: Mineral contents of edible seaweeds collected from Gijang and Wando in Korea. J. Kor. Fish. Soc. 39, 16-22 (2006).
  15. Baek, E.Y.: A study on the distribution structure of seaweed market in Korea. Korea Maritime Review. 272, 55-68 (2007).
  16. Choi, J.S., Bae, H.J., Kim, Y.C., Park, N.H., Kim, T.B., Choi, Y.J., Choi, E.Y., Park, S.M. and Choi, I.S.: Nutritional Composition and Biological Activities of the Methanol Extracts of Sea Mustard (Undaria pinnatifida) in Market. J. Life Sci. 18, 387-394 (2008). https://doi.org/10.5352/JLS.2008.18.3.387
  17. Maruyama, H., Tamauchi, H., Iizuka, M. and Nakano, T.: Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida. In Vivo. 17, 245-249 (2003).
  18. Zhang, W., Oda, T., Yu, Q. and Jin, J.O.: Fucoidan from Macrocystis pyrifera Has Powerful Immune-Modulatory Effects Compared to Three Other Fucoidans. Mar. Drugs. 19, 1084-1104 (2015).
  19. Kim, K.H. and Kim, C.S.: Studies on the manufacture of Undaria pinnatifida, laver and it's physiocochemical properties Kor. J. Food Sci. Tech. 14, 336-341 (1982).
  20. Botes, M., van Reenen, C.A. and Dicks LMT.: Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with infant milk formulations as substrate. Int. J. Food Microbiol. 128, 362-370 (2008). https://doi.org/10.1016/j.ijfoodmicro.2008.09.016
  21. Nagata, Y., Hashiguchi, K., Kamimura, Y., Yoshida, M. and Gomyo, T.: The gastrointestinal transit tolerance of Lactobacillus plantarum strain No. 14 depended on the carbon source. Biosci. Biotechnol. Biochem. 73, 2650-2655 (2009). https://doi.org/10.1271/bbb.90498
  22. Zhang, H., Liu, L., Hao, Y., Zhong, S., Liu, H., Han, T. and Xie, Y.: Isolation and partial characterization of a bacteriocin produced by Lactobacillus plantarum BM-1 isolated from a traditionally fermented Chinese meat product. Microbiol. Immunol. 57, 746-755 (2013). https://doi.org/10.1111/1348-0421.12091
  23. Jung, W.J., Lee, K.G., Kim, C.W. and Lee S.H.: Assessment of Applicability of a Calcium Carbonate-Alginate Beads as Neutralizer for the High Cell Density Cultivation of Isolated Sourdough Lactic Acid Bacteria. Food Engineering Progress. 3, 208-216 (2010).
  24. Moon, S.H., Chang, H.C. and Kim, I.C.: Development of a Novel Medium with Chinese Cabbage Extract and Optimized Fermentation Conditions for the Cultivation of Leuconostoc citreum GR1. J. Korean Soc. Food Sci. Nutr. 42, 1125-1132 (2013). https://doi.org/10.3746/jkfn.2013.42.7.1125
  25. Senz, M., van Lengerich, B., Bader, J. and Stahl, U.: Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing. Int. J. Food Microbiol. 192, 34-42 (2015). https://doi.org/10.1016/j.ijfoodmicro.2014.09.015
  26. Ko, S.J., Jeong, S.S., Choi, C.H. and Kim, K.H.: pH and buffering capacity in some commercial fermented milks. Journal of Korean society of Dental Hygiene. 4, 23-26 (2013).
  27. Chuang, L., Wu, K.G., Pai, C., Hsieh, P.S., Tsai, J.J., Yen, J.H. and Lin, M.Y.: Heat-killed cells of Lactobacilli Skew the immune response toward T Helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J. Agric. Food Chem. 55, 11080-11086 (2007). https://doi.org/10.1021/jf071786o

Cited by

  1. Investigation of the Lactic Acid Bacteria Content of Probiotic and Lactic Acid Bacteria Products: a Study on Changes in the Preservation Method of Probiotic Products vol.33, pp.6, 2018, https://doi.org/10.13103/JFHS.2018.33.6.474