DOI QR코드

DOI QR Code

The Antioxidant and Skin Whitening Effect of Withania somnifera (Winter Cherry)

윈터체리 추출물의 항산화 및 미백 개선 효과

  • Kim, Dae Yong (Department of Pharmaceutical Science and Engineering, Seowon University) ;
  • Kim, Mee Kyung (Department of Cosmetic Science & Technology, Seowon University) ;
  • Kim, Bong-Woo (Department of Cosmetic Science & Technology, Seowon University)
  • Received : 2015.05.13
  • Accepted : 2015.08.18
  • Published : 2015.09.30

Abstract

Withania somnifera has been used in folk medicine to treat various ailments for centuries. In this studies to investigate the whitening effect of Withania somnifera extracts as an active ingredient for whitening cosmetics, the antioxidant capacity and the effects of Withania somnifera extracts on melanogenesis in B16-F10 melanoma cells were identified. Withania somnifera extracts significantly reduced both tyrosinase activity and melanin content in a concentration-dependent manner. Furthermore, it was found that Withania somnifera extracts decreased ${\alpha}-MSH$ (melanocyte-stimulating hormone)-induced tyrosinase activity and MITF(microphthalmia associated transcription factor) protein expression. These data indicate that Withania somnifera extracts attenuate ${\alpha}$-MSH-stimulated melanin synthesis by modulating MITF expression and that they may be a useful therapeutic agent for treating hyperpigmentation and an ingredient of whitening cosmetics.

본 연구는 윈터체리 추출물의 미백 활성을 검증하여 기능성 미백 소재로서의 가능성을 확인하였다. 먼저, DPPH, ABTS, FRAP를 이용한 항산화 활성 검증에서 윈터체리 추출물은 매우 높은 항산화 효과를 보였으며, 티로시나아 제의 활성에도 농도 의존적인 억제 효과를 보여주었다. 마우스 유래 B16-F10 멜라노마 세포를 이용한 멜라닌 생성에서 윈터체리 추출물이 미치는 영향을 확인한 결과, 세포 내에서 생합성 되는 멜라닌의 양이 상당히 감소하고 있음을 확인하였다. 또한, 멜라닌 생성을 더욱 유도하는 ${\alpha}-MSH$를 세포에 처리하였을 때, 윈터체리 추출물은 농도 의존적인 억제 효능을 보여주었다. 이러한 윈터체리 추출물의 멜라닌 생성 억제는 MITF 전사인자의 발현을 억제함으로써 일어나고, 결과적으로 멜라닌 생합성과 관련된 티로시나아제와 Tyrp-1 등의 단백질 발현을 감소시킴으로써 일어나게 됨을 확인하였다. 이러한 결과들로 볼 때, 윈터체리 추출물은 기존의 미백 원료들을 대체할 수 있을 뿐만 아니라 함께 사용할 경우 상승 효과를 낼 수 있는 새로운 미백 소재로 활용될 수 있을 것이다.

Keywords

References

  1. Agarwal, R., Diwanay, S., Patki, P., Patwardhan, B.: Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J. Ethnopharmacol., 67, 27-35 (1999). https://doi.org/10.1016/S0378-8741(99)00065-3
  2. Singh, D., Aggarwal, A., Maurya, R., Naik, S.: Withania somnifera inhibits NF-kB and AP-1 transcription factors in human peripheral blood and synovial fluid mononuclear cells. Phytother Res., 21, 905-913 (2007). https://doi.org/10.1002/ptr.2180
  3. Aalinkeel, R., Hu, Z., Nair, B. B., Sykes, D. E., Reynolds J. L., Mahajan, S. D., Schwartz, S. A.: Genomic analysis highlights the role of the JAC-STAT signaling in the anti-proliferative effects of dietary flavonoid-'Ashwagandha' in prostate cancer cells. Evid Based Complement Altemat. Med., 7, 177-187 (2010). https://doi.org/10.1093/ecam/nem184
  4. Nakajima, H., Wakabayashi, Y., Wakamatsu, K., Imokawa, G. An extract of Withania somnifera attenuates endothelin-1stimulated pigmentation in human epidermal equivalents through the interruption of PKC activity within melanocytes. Phytother Res., 25, 1398-1411 (2011).
  5. Nakajima, H., Fukazawa, K., Wakabayashi, Y., Wakamatsu, K., Imokawa, G.: Withania somnifera extract attenuates stem cell factor-stimulated pigmentation in human epidermal equivalents through interruption of ERK phosphorylation within melanocytes. J. Nat. Med., 66, 435-446 (2012). https://doi.org/10.1007/s11418-011-0604-0
  6. Nakajima, H., Fukazawa, K., Wakabayashi, Y., Wakamatsu, K., Senda, K., Imokawa, G.: Abrogating effect of a xanthophyll carotenoid zstaxanthin on the stem cel factor-induced stimulation of human epidermal pigmentation. Arch. Dermaltol. Res., 304, 803-816 (2012). https://doi.org/10.1007/s00403-012-1248-y
  7. Lim, J. Y., Fisher, D. E.: Melanocyte biology and skin pigmentation. Nature, 445, 843-850 (2007). https://doi.org/10.1038/nature05660
  8. Spritz, R. A., Hearing V. J.: Genetic disorders of pigmentation. Adv. Hum. Gent., 22, 1-45 (1994).
  9. Prota, G.: Some new aspects of eumelanin chemistry. Prog. Clin. Biol. Res., 256, 101-124 (1998).
  10. Hearing V. J., Jimenez, M.: Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int. J. Biochem,. 19, 1141-1147 (1987). https://doi.org/10.1016/0020-711X(87)90095-4
  11. Jackson, I. J., Chanmbers, D. M., Tsukamoto, K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Hearing, V. J.: A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J., 11, 527-535 (1992).
  12. Kobayashi, T., Urabe, K., Winder, A. J., Jimnez-Cervantes, C., Imokawa, G., Brewington, T., Solano, F., Garcia-Borron, J. C., Hearing V. J.: Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J., 13, 5818-5825 (1994).
  13. Costin, G. E., Hearing, V. J.: Human skin pigmentation : melanocytes modulate skin color in response to stress. FASEB J., 21, 976-994 (2007). https://doi.org/10.1096/fj.06-6649rev
  14. Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., Arnheiter, H.: Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helixzipper protein. Cell, 74, 395-404 (1993). https://doi.org/10.1016/0092-8674(93)90429-T
  15. Yasumoto, K., Yokoyama, K., Takahashi, K., Tomita, Y., Shibahara, S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem., 272, 503-509 (1997). https://doi.org/10.1074/jbc.272.1.503
  16. Briganti, S., Camera, E., Picardo, M.: Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res., 16, 101-110 (2003). https://doi.org/10.1034/j.1600-0749.2003.00029.x
  17. Maeda, K., Fukuda, M.: Arbutin: mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther., 276, 765-769 (1996).
  18. Jeong, S. C., Park, J. H., Kim, J. H.: The development trend of skin beauty food with skin protection effects from natural source. Kor. J. Aesthet. Cosmetol., 11(2), 203-212 (2013).
  19. Choi J.H., Park Y.H., Lee S.G., Lee S.H., Yu M.H., Lee M.S., Park S.H., Lee I.S., Kim H.J.: Antioxidant activities and $\alpha$-Glucosidase inhibition effects of chicories grown in hydroponics added with $Cr^{3+}$ or selenium. J. Fd Hyg. Safety, 29, 53-59 (2014). https://doi.org/10.13103/JFHS.2014.29.1.053
  20. Steingrimsson, E., Copeland, N. G., Jenkins, N. A.: Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet., 38, 365-411 (2004). https://doi.org/10.1146/annurev.genet.38.072902.092717
  21. Yamaguchi, Y., Hearing, V. J.: Physiological factors that regulate skin pigmentation. Biofactors. 35, 193-199 (2009). https://doi.org/10.1002/biof.29
  22. Goding, C. R.: Melanocytes: the new Black. Int. J. Biochem. Cell Biol., 39, 275-279 (2007). https://doi.org/10.1016/j.biocel.2006.10.003
  23. Bentley, N. J., Eisen, T., Goding, C. R.: Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell Biol., 14, 7996-8006 (1994). https://doi.org/10.1128/MCB.14.12.7996