DOI QR코드

DOI QR Code

The Study on the Economic Effects of Advanced Water Treatment by using CVM

CVM을 이용한 고도정수처리의 경제적 효과 분석

  • Received : 2015.04.07
  • Accepted : 2015.07.16
  • Published : 2015.09.30

Abstract

This paper attempts to measure the economic benefits of advanced water treatment in five cities (Goyang, Paju, Gumi, Gimcheon, Chilgok), which are supplied water from Goyang and Gumi filtration plant. We used the dichotomous choice contingent valuation method to estimate WTP. Parametric interval-data model are used to obtaining the mean WTP estimates. The results show that the mean of additional WTP for advanced water treatment services were estimated to be KRW 231.3 and KRW 231.2 per $m^3$ using model with covariates and without covariates, respectively. Given the water supplies of Goyang and Gumi filtration plants ($59.675m^3/y$ and $93.734m^3/y$), the economic benefits of those advanced water treatments can be expected to be KRW 13.8 billion and KRE 21.68 billion. And the calculated B/C ratios are 3.7 and 2.1 when a lifespan of facility is 10 years. Advanced water treatment should be introduced in terms of the economic benefits and costs. Thus, this results can be useful in water policy decision-making.

본 논고는 고양 정수장과 구미 정수장으로부터 물을 공급받고 있는 5개 도시(고양, 파주, 구미, 김천, 칠곡)를 대상으로 고도정수처리 도입의 경제적 편익을 평가하였다. 지불가능금액(WTP) 추정을 위한 방법으로는 이중경계 양분선택형 CVM을 이용하였다. 특히 평균 WTP 추정값을 도출하기 위한 방법으로 모수 추정법 중 구간 데이터(interval-data) 모델을 이용하였다. 고도정수처리서비스에 대한 추가 지불 WTP(평균)는 공변량을 포함한 모델을 적용하였을 경우 톤당 231.3원이, 공변량을 포함하지 않은 모델을 적용하였을 경우에는 231.2원인 것으로 추정되었다. 한편 추정된 WTP와 함께 고양 및 구미 정수장으로부터 공급받는 수돗물 공급량(각각 59.675 백만$m^3$/년, 93.734 백만$m^3$/년)을 고려하여 정수장별 고도정수처리의 경제적 편익을 도출한 결과 고양정수장은 약138억 원/년이, 구미정수장은 16.8억 원/년으로 추정되었다. 그리고 설비의 내구연한을 10년으로 가정할 경우, 비용 대비 편익 비율은 고양정수장이 3.7, 구미정수장이 2.1로 조사되었다. 수도사업 관련 고도정수처리 도입은 공공사업의 한 유형으로, 이는 경제적 편익 및 비용이 동시에 고려되어야 할 정책적 사업이다. 이러한 의미에서 본 연구의 산출물인 고도정수처리의 WTP는 정책결정자의 수질개선 관련 의사결정에 기초 자료가 될 것이다.

Keywords

References

  1. Cameron, T.A., and James, D. (1987). "Efficient estimation methods for closed-ended contingent valuation surveys." Reviewof Economics and Statistics, Vol. 69, pp. 269-276. https://doi.org/10.2307/1927234
  2. Cameron, T.A., and Quiggin, J. (1994). "Estimation using contingent valuation data from a dichotomous choice with follow-up questionnaire." Journal of Environmental Economics and Management, Vol. 27, pp. 218-234. https://doi.org/10.1006/jeem.1994.1035
  3. Chae, S.B., and Kang, K.R. (2011), "The estimation of the economic value of avoiding cutting off the water using contingent valuation Method." Seoul Studies, Vol. 12, No. 2, pp. 141-153.
  4. Hanemann, M., and Kanninen, B. (1999). "The Statistical Analysis of Discrete-Response CV Data." in Bateman. I.J. and Willis. K.G. (eds.). "Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US. EU, and Developing Countries." Oxford University Press, pp. 403-491.
  5. Hanemann, M., Loomis, J., and Kanninen, B. (1991). "Statistical efficiency of double bounded dichotomous choice contingent valuation" American Journal of Agricultural Economics, Vol. 73, pp. 1255-1263. https://doi.org/10.2307/1242453
  6. Hanemann, W.M. (1984). "Welfare evaluations in contingent valuation experiments with discrete responses." American Journal of Agricultural Economics, Vol. 66, pp. 332-341. https://doi.org/10.2307/1240800
  7. Korea Culture and Tourism Institute (2007). "Economic value analysis of the business of making the traditional culture to digital contents." pp. 35-41.
  8. Korea Development Institute (2008). "Modify general guidelines for pre-feasibility study (fifth edition)." p. 327.
  9. Kwak, S.Y., and Yoo, S.H. (2012). "Measuring the economic benefits of the tap water quality improvement in Ulsan." Journal of Korea Water Resources Association, Vol. 45, No. 1, pp. 29-37. https://doi.org/10.3741/JKWRA.2012.45.1.29
  10. K-water (2014). "Measuring the Economic Benefits of the Tap Water Quality Improvement." p. 20.
  11. Lee, WS., Yoo, SH., and Kim, JH. (2013). "Measuring the economic benefits of the tap water supply service in urban areas: the case of Korea." Water resource Management, Vol. 27, pp. 619-627. https://doi.org/10.1007/s11269-012-0206-y
  12. McConnell, K.E. (1990). "Models for referendum data: the structure of discrete choice models for contingent valuation." Journal of Environmental Economics and Management, Vol. 18, pp. 19-34. https://doi.org/10.1016/0095-0696(90)90049-5
  13. Ministry of Environment (2014a). "2013 Statistics of Waterworks." pp. 5-8.
  14. Ministry of Environment (2014b). "White paper of environment." pp. 115-116.
  15. MOLIT (Ministry of Land, Infrastructure and Transport) and K-water (2014). "Water and Future." p. 134.
  16. Pyo, H.D., Park, C.H., and Choo, J.W. (2011). "Estimating willingness to pay for the tap water quality improvement in Busan using nonparametric approach." Journal of Korea Water Resources Association, Vol. 44, No. 2, pp. 125-134. https://doi.org/10.3741/JKWRA.2011.44.2.125
  17. Yoo, S.H., Shin, C.O., and Yang, C.Y. (2006). "Household's willingness to pay for piped water quality improvement in Wonju." Journal of Environmental Policy, Vol. 5, No. 3, pp. 79-103.