DOI QR코드

DOI QR Code

Evaluation of Some Rare Metals and Rare Earth Metals Contained in Coal Ash of Coal-fired Power Plants in Korea

국내 석탄화력발전소 석탄회 중 희유금속 가치 평가

  • 박석운 (한국전력공사 전력연구원) ;
  • 김재관 (한국전력공사 전력연구원) ;
  • 이형범 (한국전력공사 전력연구원) ;
  • 서연석 (한국전력공사 전력연구원) ;
  • 홍준석 (한국전력공사 전력연구원) ;
  • 이현동 (한국전력공사 전력연구원)
  • Received : 2015.06.16
  • Accepted : 2015.07.29
  • Published : 2015.08.31

Abstract

The content distributions of some rare metals and rare earthe metals in coal ash (fly ash, bottom ash and pond ash) and leachate from coal-fired power plants were investigated. In case of Yttrium (Y) and Neodymium (Nd) which were strategic critical elements, their contents were ranged from about 23 ~ 75 mg/kg and it is shown they are worth to be developed for the recovery and separation method. Considering the annual amount of fly ash and bottom ash and pond ash, coal-fired power plants have great value of about 1,670 billion KRW and it is regards they are worthy as urban mines.

국내 석탄화력발전소 11곳의 석탄회(비산재, 바닥재 및 매립회) 및 매립장 상등수를 채취하여 희유금속의 함량분포를 살펴보았다. 주요 전략광물인 이트륨(Yttrium) 및 네오디뮴(Neodymium)의 경우 약 23 ~ 75 mg/kg 범위로 나타났으며 별도의 회수기술 개발에 대한 가치가 충분한 것으로 판단되었다. 연간 발생하는 비산재 및 바닥재와 더불어 매립회의 양을 감안하면 국내 석탄화력발전소가 보유하고 있는 희유금속은 약 1.67조 원의 가치가 있는 것으로 조사되어 도시광산으로서 충분한 경제적 가치가 있는 것으로 판단된다.

Keywords

References

  1. Statistics of Electric Power in Korea (2014), 2015: Korea Electric Power Corporation
  2. Jong Keun Lee and Jae Young Kim, 2013: Recovery Potential of Rare Earth Elements in Coal Ashes, Jounrnal of Korea Society of Waste Management, 30(1), pp. 94-99 https://doi.org/10.9786/kswm.2013.30.1.94
  3. Critical Materials Strategy, 2011: U.S. Department of Energy (DOE)
  4. World of coal ash, 2013: American coal ash Association, Ash at work, Issue 1
  5. Wojciech Franus, Malgorzata M. Wiatros-Motyka and Magdalena Wdowin, 2015: Coal fly ash as a resource for rare earth elements, Environmental Science and pollution research international, DOI 10.1007/s11356-015-4111-9
  6. Blissett R.S., Smalley N. and Rowson N. A., 2014: An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content, Fuel, 119, 236-239 https://doi.org/10.1016/j.fuel.2013.11.053
  7. Querol X., Fernandez-Turiel J. and Lopez-Soler A., 1995: Trace elements in coal and their behavior during combustion in a large power station, Fuel, 74(3), 331-343 https://doi.org/10.1016/0016-2361(95)93464-O
  8. Goldschmidt, V. M., 1935 : Rare Elements in Coal Ashes, Industrial and Engineering Chemistry, 27(9), pp. 1100-1102 https://doi.org/10.1021/ie50309a032
  9. Zhang, F. S., Yamasaki, S. and Kimura, K., 2001: Rare earth element in various waste ashes and the potential risk to Japanese soils, Environment International, 27, pp. 393-398 https://doi.org/10.1016/S0160-4120(01)00097-6
  10. Zhang, F. S., Yamasaki, S. and Nanzyo, M., 2002: Waste ashes for use in agricultural production : I. Liming effect, contents of plant nutrients and chemical characteristics of some metals, The Science of the Total Environment, 284, pp. 215-225 https://doi.org/10.1016/S0048-9697(01)00887-7
  11. Zhang, F. S., Yamasaki, S. and Kimura, K., 2002: Waste ashes for use in agricultural production: II. Contents of minor and trace metals, The Science of the Total Environment, 286, pp. 111-118 https://doi.org/10.1016/S0048-9697(01)00968-8
  12. The Global Role of Rare Earth Materials (Renewed Impetus For Renewed Energy Drives Rare Earths Industry), 2011: FROST&SULLIVAN, pp. 9833-9839
  13. Problem and Corresponding in Rare Earth Industry, 2014: Japan Society of Newer Metals

Cited by

  1. 에틸렌글리콜법을 활용한 국내 순환유동층보일러 석탄회의 Free CaO 평가 연구 vol.26, pp.1, 2017, https://doi.org/10.5855/energy.2017.26.1.001
  2. 발전회를 이용한 광산환경 복원사례 연구 vol.26, pp.2, 2017, https://doi.org/10.7844/kirr.2017.26.2.80
  3. 국내 순환유동층보일러 석탄재의 희토류 분포 특성 및 평가 vol.27, pp.6, 2018, https://doi.org/10.7844/kirr.2018.27.6.68
  4. 석탄재에 포함된 희토류의 경제성 평가 vol.28, pp.6, 2019, https://doi.org/10.7844/kirr.2019.28.6.26