References
- Badnava, H., Farhoudi, H.R., Nejad, K.F. and Pezeshki, S.M. (2012), "Ratcheting behavior of cylindrical pipes based on the Chaboche kinematic hardening rule", J. Mech. Sci. Tech., 26(10), 3073-3079. https://doi.org/10.1007/s12206-012-0834-4
- Bari, S. and Hassan, T. (2000), "Anatomy of coupled constitutive models for ratcheting simulation", Int. J. Plast., 16(3), 381-409. https://doi.org/10.1016/S0749-6419(99)00059-5
- Benallal, A., Le Gallo, P. and Marquis, D. (1989), "An experimental investigation of cyclic hardening of 316 stainless steel and of 2024 aluminium alloy under multiaxial loadings", Nucl. Eng. Des., 114(3), 345-353. https://doi.org/10.1016/0029-5493(89)90112-X
- Benham, P. (1965), "Some observations of cyclic strain-induced creep in mild steel at room temperature", Int. J. Mech. Sci., 7(2), 81-86. https://doi.org/10.1016/0020-7403(65)90067-6
- Besseling, J. (1959), "A Theory of elastic, plastic and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep", Int. J. Appl. Mech., 25, 529-536
- Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
- Chaboche, J.L. (1991), "On some modifications of kinematic hardening to improve the description of ratchetting effects", Int. J. Plast., 7(7), 661-678. https://doi.org/10.1016/0749-6419(91)90050-9
- Chen, X., Chen, X., Yu, D. and Gao, B. (2013), "Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping", Int. J. Press. Vess. Pip., 101, 113-142. https://doi.org/10.1016/j.ijpvp.2012.10.008
- Corona, E., Hassan, T. and Kyriakides, S. (1996), "On the performance of kinematic hardening rules in predicting a class of biaxial ratcheting histories", Int. J. Plast., 12(1), 117-145. https://doi.org/10.1016/S0749-6419(95)00047-X
- Dafalias, Y. and Popov, E. (1976), "Plastic internal variables formalism of cyclic plasticity", J. Appl. Mech., 43(4), 645-651. https://doi.org/10.1115/1.3423948
- Delobelle, P., Robinet, P. and Bocher, L. (1995), "Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel", Int. J. Plast., 11(4), 295-330. https://doi.org/10.1016/S0749-6419(95)00001-1
- Dong, J., Wang, S. and Lu, X. (2006), "Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading", Struct. Eng. Mech., 24(3), 323-347. https://doi.org/10.12989/sem.2006.24.3.323
- Frederick, C.O. and Armstrong, P. (1966), "A mathematical representation of the multiaxial Bauschinger effect", CEGB Report No. RD/B/N 731.
- Hassan, T., Corona, E. and Kyriakides, S. (1992), "Ratcheting in cyclic plasticity, part II: multiaxial behavior", Int. J. Plast., 8(2), 117-146. https://doi.org/10.1016/0749-6419(92)90010-A
- Hassan, T. and Kyriakides, S. (1992), "Ratcheting in cyclic plasticity, part I: uniaxial behavior", Int. J. Plast., 8(1), 91-116. https://doi.org/10.1016/0749-6419(92)90040-J
- Hassan, T. and Kyriakides, S. (1994a), "Ratcheting of cyclically hardening and softening materials, part I: uniaxial behavior", Int. J. Plast., 10(2), 149-184. https://doi.org/10.1016/0749-6419(94)90033-7
- Hassan, T. and Kyriakides, S. (1994b), "Ratcheting of cyclically hardening and softening materials, part II: multiaxial behavior", Int. J. Plast., 10(2), 185-212. https://doi.org/10.1016/0749-6419(94)90034-5
- Jiang, Y. and Kurath, P. (1996), "Characteristics of the Armstrong-Frederick type plasticity models", Int. J. Plast., 12(3), 387-415. https://doi.org/10.1016/S0749-6419(96)00013-7
- Jiang, Y. and Sehitoglu, H. (1994), "Multiaxial cyclic ratchetting under multiple step loading", Int. J. Plast., 10(8), 849-870. https://doi.org/10.1016/0749-6419(94)90017-5
- Kang, G. (2008), "Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application", Int. J. Fatig., 30(8), 1448-1472. https://doi.org/10.1016/j.ijfatigue.2007.10.002
- Kang, G., Gao, Q., Cai, L. and Sun, Y. (2002), "Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures", Nucl. Eng. Des., 216(1), 13-26. https://doi.org/10.1016/S0029-5493(02)00062-6
- Mahmoudi, A.H., Badnava, H. and Pezeshki-Najafabadi, S.M. (2011a), "An application of Chaboche model to predict uniaxial and multiaxial ratcheting", Procedia Eng., 10(0), 1924-1929. https://doi.org/10.1016/j.proeng.2011.04.319
- Mahmoudi, A.H., Pezeshki-Najafabadi, S.M. and Badnava, H. (2011b), "Parameter determination of Chaboche kinematic hardening model using a multi objective genetic algorithm", Comput. Mater. Sci., 50(3), 1114-1122. https://doi.org/10.1016/j.commatsci.2010.11.010
- Mroz, Z. (1967), "On the description of anisotropic work hardening", J. Mech. Phys. Solid., 15(3), 163-175. https://doi.org/10.1016/0022-5096(67)90030-0
- Ohno, N. and Wang, J.D. (1993a), "Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior", Int. J. Plast., 9(3), 375-390. https://doi.org/10.1016/0749-6419(93)90042-O
- Ohno, N. and Wang, J.D. (1993b), "Kinematic hardening rules with critical state of dynamic recovery, Part II: application to experiments of ratchetting behavior", Int. J. Plast., 9(3), 391-403. https://doi.org/10.1016/0749-6419(93)90043-P
- Rahman, S.M. (2006), "Finite element analysis and related numerical schemes for ratcheting simulation", Ph. D. Thesis, North Carolina State University, Raleigh.
- Shariati, M., Hatami, H., Torabi, H. and Epakchi, H.R. (2012), "Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading", Struct. Eng. Mech., 44(6), 753-762. https://doi.org/10.12989/sem.2012.44.6.753
- Shield, R.T. and Ziegler, H. (1958), "On Prager's hardening rule", J. Appl. Math. Phys., 9a, 260-276.
- Zakavi, S.J., Zehsaz, M. and Eslami, M.R. (2010), "The ratchetting behavior of pressurized plain pipework subjected to cyclic bending moment with the combined hardening model", Nucl. Eng. Des., 240(4), 726-737. https://doi.org/10.1016/j.nucengdes.2009.12.012