DOI QR코드

DOI QR Code

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran (Department of Applied Mechanics, Indian Institute of Technology Delhi) ;
  • Patel, B.P. (Department of Applied Mechanics, Indian Institute of Technology Delhi)
  • Received : 2014.09.02
  • Accepted : 2015.04.04
  • Published : 2015.09.10

Abstract

The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Keywords

References

  1. Badnava, H., Farhoudi, H.R., Nejad, K.F. and Pezeshki, S.M. (2012), "Ratcheting behavior of cylindrical pipes based on the Chaboche kinematic hardening rule", J. Mech. Sci. Tech., 26(10), 3073-3079. https://doi.org/10.1007/s12206-012-0834-4
  2. Bari, S. and Hassan, T. (2000), "Anatomy of coupled constitutive models for ratcheting simulation", Int. J. Plast., 16(3), 381-409. https://doi.org/10.1016/S0749-6419(99)00059-5
  3. Benallal, A., Le Gallo, P. and Marquis, D. (1989), "An experimental investigation of cyclic hardening of 316 stainless steel and of 2024 aluminium alloy under multiaxial loadings", Nucl. Eng. Des., 114(3), 345-353. https://doi.org/10.1016/0029-5493(89)90112-X
  4. Benham, P. (1965), "Some observations of cyclic strain-induced creep in mild steel at room temperature", Int. J. Mech. Sci., 7(2), 81-86. https://doi.org/10.1016/0020-7403(65)90067-6
  5. Besseling, J. (1959), "A Theory of elastic, plastic and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep", Int. J. Appl. Mech., 25, 529-536
  6. Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  7. Chaboche, J.L. (1991), "On some modifications of kinematic hardening to improve the description of ratchetting effects", Int. J. Plast., 7(7), 661-678. https://doi.org/10.1016/0749-6419(91)90050-9
  8. Chen, X., Chen, X., Yu, D. and Gao, B. (2013), "Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping", Int. J. Press. Vess. Pip., 101, 113-142. https://doi.org/10.1016/j.ijpvp.2012.10.008
  9. Corona, E., Hassan, T. and Kyriakides, S. (1996), "On the performance of kinematic hardening rules in predicting a class of biaxial ratcheting histories", Int. J. Plast., 12(1), 117-145. https://doi.org/10.1016/S0749-6419(95)00047-X
  10. Dafalias, Y. and Popov, E. (1976), "Plastic internal variables formalism of cyclic plasticity", J. Appl. Mech., 43(4), 645-651. https://doi.org/10.1115/1.3423948
  11. Delobelle, P., Robinet, P. and Bocher, L. (1995), "Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel", Int. J. Plast., 11(4), 295-330. https://doi.org/10.1016/S0749-6419(95)00001-1
  12. Dong, J., Wang, S. and Lu, X. (2006), "Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading", Struct. Eng. Mech., 24(3), 323-347. https://doi.org/10.12989/sem.2006.24.3.323
  13. Frederick, C.O. and Armstrong, P. (1966), "A mathematical representation of the multiaxial Bauschinger effect", CEGB Report No. RD/B/N 731.
  14. Hassan, T., Corona, E. and Kyriakides, S. (1992), "Ratcheting in cyclic plasticity, part II: multiaxial behavior", Int. J. Plast., 8(2), 117-146. https://doi.org/10.1016/0749-6419(92)90010-A
  15. Hassan, T. and Kyriakides, S. (1992), "Ratcheting in cyclic plasticity, part I: uniaxial behavior", Int. J. Plast., 8(1), 91-116. https://doi.org/10.1016/0749-6419(92)90040-J
  16. Hassan, T. and Kyriakides, S. (1994a), "Ratcheting of cyclically hardening and softening materials, part I: uniaxial behavior", Int. J. Plast., 10(2), 149-184. https://doi.org/10.1016/0749-6419(94)90033-7
  17. Hassan, T. and Kyriakides, S. (1994b), "Ratcheting of cyclically hardening and softening materials, part II: multiaxial behavior", Int. J. Plast., 10(2), 185-212. https://doi.org/10.1016/0749-6419(94)90034-5
  18. Jiang, Y. and Kurath, P. (1996), "Characteristics of the Armstrong-Frederick type plasticity models", Int. J. Plast., 12(3), 387-415. https://doi.org/10.1016/S0749-6419(96)00013-7
  19. Jiang, Y. and Sehitoglu, H. (1994), "Multiaxial cyclic ratchetting under multiple step loading", Int. J. Plast., 10(8), 849-870. https://doi.org/10.1016/0749-6419(94)90017-5
  20. Kang, G. (2008), "Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application", Int. J. Fatig., 30(8), 1448-1472. https://doi.org/10.1016/j.ijfatigue.2007.10.002
  21. Kang, G., Gao, Q., Cai, L. and Sun, Y. (2002), "Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures", Nucl. Eng. Des., 216(1), 13-26. https://doi.org/10.1016/S0029-5493(02)00062-6
  22. Mahmoudi, A.H., Badnava, H. and Pezeshki-Najafabadi, S.M. (2011a), "An application of Chaboche model to predict uniaxial and multiaxial ratcheting", Procedia Eng., 10(0), 1924-1929. https://doi.org/10.1016/j.proeng.2011.04.319
  23. Mahmoudi, A.H., Pezeshki-Najafabadi, S.M. and Badnava, H. (2011b), "Parameter determination of Chaboche kinematic hardening model using a multi objective genetic algorithm", Comput. Mater. Sci., 50(3), 1114-1122. https://doi.org/10.1016/j.commatsci.2010.11.010
  24. Mroz, Z. (1967), "On the description of anisotropic work hardening", J. Mech. Phys. Solid., 15(3), 163-175. https://doi.org/10.1016/0022-5096(67)90030-0
  25. Ohno, N. and Wang, J.D. (1993a), "Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior", Int. J. Plast., 9(3), 375-390. https://doi.org/10.1016/0749-6419(93)90042-O
  26. Ohno, N. and Wang, J.D. (1993b), "Kinematic hardening rules with critical state of dynamic recovery, Part II: application to experiments of ratchetting behavior", Int. J. Plast., 9(3), 391-403. https://doi.org/10.1016/0749-6419(93)90043-P
  27. Rahman, S.M. (2006), "Finite element analysis and related numerical schemes for ratcheting simulation", Ph. D. Thesis, North Carolina State University, Raleigh.
  28. Shariati, M., Hatami, H., Torabi, H. and Epakchi, H.R. (2012), "Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading", Struct. Eng. Mech., 44(6), 753-762. https://doi.org/10.12989/sem.2012.44.6.753
  29. Shield, R.T. and Ziegler, H. (1958), "On Prager's hardening rule", J. Appl. Math. Phys., 9a, 260-276.
  30. Zakavi, S.J., Zehsaz, M. and Eslami, M.R. (2010), "The ratchetting behavior of pressurized plain pipework subjected to cyclic bending moment with the combined hardening model", Nucl. Eng. Des., 240(4), 726-737. https://doi.org/10.1016/j.nucengdes.2009.12.012