과제정보
연구 과제 주관 기관 : National Research Foundation of Korea (NRF)
참고문헌
- Andreassen, E., Anders, C., Mattias, S., Stefanov, L.B. and Sigmund, O. (2011), "Efficient topology optimization in MATLAB using 88 lines of code", Struct. Multidiscip. O., 43(1), 1-16. https://doi.org/10.1007/s00158-010-0594-7
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in optimal design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
- Bendsoe, M.P. (1995), Optimization of Structural Topology, Shape, and Material, Berlin, Heidelberg, New York, Springer.
- Challis, V.J. (2010), "A discrete level-set topology optimization code written in Matlab", Struct. Multidiscip. O., 41(3), 453-464. https://doi.org/10.1007/s00158-009-0430-0
- Fu, Y. and Zhang, X. (2014), "An optimization approach for black-and-white and hinge-removal topology designs", J. Mech. Sci. Tech., 28(2), 581-593. https://doi.org/10.1007/s12206-013-1191-7
- Lee, D.K., Shin, S.M. and Park, S.S. (2007), "Computational morphogenesis based structural design by using material topology optimization", Mech. Bas. Des. Struct. Mach., 35(1), 39-58. https://doi.org/10.1080/15397730601180756
- Patnaik, S.N., Guptill, D.J. and Berke, L. (1995), "Merits and limitations of optimality criteria method for structural optimization", Internat. J. Numer. Mech. Eng., 38, 3087-3120. https://doi.org/10.1002/nme.1620381806
- Rozvany, G.I.N. (1989), "Structural design via optimality criteria", Mech. Elast. Inelast. Solid., 8, 1-461. https://doi.org/10.1007/978-94-009-1161-1_1
- Sen, M. and Roy, S. (2013), "On paranormed type fuzzy I-convergent double multiplier sequence", Kuwait J. Sci., 40(1), 1-12.
- Sigmund, O. (2001), "A 99 line topology optimization code written in Matlab", Struct. Multidiscip. O., 21, 120-127. https://doi.org/10.1007/s001580050176
- Suresh, K. (2010), "A 199-line Matlab code for Pareto-optimal tracing in topology optimization", Struct. Multidiscip. O., 42(5), 665-679. https://doi.org/10.1007/s00158-010-0534-6
- Lee D.K. and Shin S.M. (2014c), "Advanced high strength steel tube diagrid using TRIZ and nonlinear pushover analysis", J. Construct. Steel Res., 96, 151-158. https://doi.org/10.1016/j.jcsr.2014.01.005
- Lee D.K. and Shin S.M. (2015), "Nonlinear pushover analysis of concrete column reinforced by multi-layered, high strength steel UL700 plates", Eng. Struct., 90, 1-14. https://doi.org/10.1016/j.engstruct.2015.01.045
- Svanberg, K. (1987), "The method of moving asymptotes - a new method for structural optimizztion", Int. J. Numer. Meth. Eng., 24, 359-373. https://doi.org/10.1002/nme.1620240207
- Zillober, C. (1993), "A globally convergent version of the method of moving asymptotes", Struct. Optim., 6, 166-174. https://doi.org/10.1007/BF01743509
- Bruns, T.E. (2007), "Topology optimization by penalty (TOP) method", Comput. Meth. Appl. Mech. Eng., 196(45-48), 4430-4443. https://doi.org/10.1016/j.cma.2007.04.016
- Lee, D.K., Kim, J.H., Starossek, U. and Shin, S.M. (2012), "Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization", Struct. Eng. Mech., 43(6), 711-724. https://doi.org/10.12989/sem.2012.43.6.711
- Yi, J., Rong, J., Zeng, T. and Huang, X. (2013), "A topology optimization method for multiple load cases and constraints based on element independent nodal density", Struct. Eng. Mech., 45(6), 759-777. https://doi.org/10.12989/sem.2013.45.6.759
- Lee, D.K., Lee, J.H. and Ahn, N.S. (2014a), "Generation of structural layout in use for '0-1' material considering n-order eigenfrequency dependence", Mater. Res. Inn., 18(2), 833-839.
- Lee, D.K., Lee, J.H., Lee, K.H. and Ahn, N.S. (2014b), "Evaluating topological optimized layout of building structures by using nodal material density based bilinear interpolation", J. Asian Arch. Build. Eng., 13(2), 421-428. https://doi.org/10.3130/jaabe.13.421
피인용 문헌
- A constant strain triangle element oriented multi-material topology optimization with a moved and regularized Heaviside function vol.79, pp.1, 2021, https://doi.org/10.12989/sem.2021.79.1.097