DOI QR코드

DOI QR Code

Generation of OC and MMA topology optimizer by using accelerating design variables

  • Lee, Dongkyu (Department of Architectural Engineering, Sejong University) ;
  • Nguyen, Hong Chan (Department of Architectural Engineering, Sejong University) ;
  • Shin, Soomi (Research Institute of Industrial Technology, Pusan National University)
  • Received : 2014.07.09
  • Accepted : 2015.02.24
  • Published : 2015.09.10

Abstract

The goal of this study is to investigate computational convergence of optimal solutions, with respect to optimality criteria (OC) method and methods of moving asymptotes (MMA) as optimization model for non-linear programming of material topology optimization using an acceleration method that makes design variables rapidly move toward almost 0 and 1 values. 99 line topology optimization MATLAB code uses loop vectorization and memory pre-allocation as properly exploiting the strengths of MATLAB and moves portions of code out of the optimization loop so that they are only executed once as restructuring the program. Numerical examples of a simple beam under a lateral load and a given material density limitation provide merits and demerits of the present OC and MMA for 99 line topology optimization code of continuous material topology optimization design.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Andreassen, E., Anders, C., Mattias, S., Stefanov, L.B. and Sigmund, O. (2011), "Efficient topology optimization in MATLAB using 88 lines of code", Struct. Multidiscip. O., 43(1), 1-16. https://doi.org/10.1007/s00158-010-0594-7
  2. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in optimal design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Bendsoe, M.P. (1995), Optimization of Structural Topology, Shape, and Material, Berlin, Heidelberg, New York, Springer.
  4. Challis, V.J. (2010), "A discrete level-set topology optimization code written in Matlab", Struct. Multidiscip. O., 41(3), 453-464. https://doi.org/10.1007/s00158-009-0430-0
  5. Fu, Y. and Zhang, X. (2014), "An optimization approach for black-and-white and hinge-removal topology designs", J. Mech. Sci. Tech., 28(2), 581-593. https://doi.org/10.1007/s12206-013-1191-7
  6. Lee, D.K., Shin, S.M. and Park, S.S. (2007), "Computational morphogenesis based structural design by using material topology optimization", Mech. Bas. Des. Struct. Mach., 35(1), 39-58. https://doi.org/10.1080/15397730601180756
  7. Patnaik, S.N., Guptill, D.J. and Berke, L. (1995), "Merits and limitations of optimality criteria method for structural optimization", Internat. J. Numer. Mech. Eng., 38, 3087-3120. https://doi.org/10.1002/nme.1620381806
  8. Rozvany, G.I.N. (1989), "Structural design via optimality criteria", Mech. Elast. Inelast. Solid., 8, 1-461. https://doi.org/10.1007/978-94-009-1161-1_1
  9. Sen, M. and Roy, S. (2013), "On paranormed type fuzzy I-convergent double multiplier sequence", Kuwait J. Sci., 40(1), 1-12.
  10. Sigmund, O. (2001), "A 99 line topology optimization code written in Matlab", Struct. Multidiscip. O., 21, 120-127. https://doi.org/10.1007/s001580050176
  11. Suresh, K. (2010), "A 199-line Matlab code for Pareto-optimal tracing in topology optimization", Struct. Multidiscip. O., 42(5), 665-679. https://doi.org/10.1007/s00158-010-0534-6
  12. Lee D.K. and Shin S.M. (2014c), "Advanced high strength steel tube diagrid using TRIZ and nonlinear pushover analysis", J. Construct. Steel Res., 96, 151-158. https://doi.org/10.1016/j.jcsr.2014.01.005
  13. Lee D.K. and Shin S.M. (2015), "Nonlinear pushover analysis of concrete column reinforced by multi-layered, high strength steel UL700 plates", Eng. Struct., 90, 1-14. https://doi.org/10.1016/j.engstruct.2015.01.045
  14. Svanberg, K. (1987), "The method of moving asymptotes - a new method for structural optimizztion", Int. J. Numer. Meth. Eng., 24, 359-373. https://doi.org/10.1002/nme.1620240207
  15. Zillober, C. (1993), "A globally convergent version of the method of moving asymptotes", Struct. Optim., 6, 166-174. https://doi.org/10.1007/BF01743509
  16. Bruns, T.E. (2007), "Topology optimization by penalty (TOP) method", Comput. Meth. Appl. Mech. Eng., 196(45-48), 4430-4443. https://doi.org/10.1016/j.cma.2007.04.016
  17. Lee, D.K., Kim, J.H., Starossek, U. and Shin, S.M. (2012), "Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization", Struct. Eng. Mech., 43(6), 711-724. https://doi.org/10.12989/sem.2012.43.6.711
  18. Yi, J., Rong, J., Zeng, T. and Huang, X. (2013), "A topology optimization method for multiple load cases and constraints based on element independent nodal density", Struct. Eng. Mech., 45(6), 759-777. https://doi.org/10.12989/sem.2013.45.6.759
  19. Lee, D.K., Lee, J.H. and Ahn, N.S. (2014a), "Generation of structural layout in use for '0-1' material considering n-order eigenfrequency dependence", Mater. Res. Inn., 18(2), 833-839.
  20. Lee, D.K., Lee, J.H., Lee, K.H. and Ahn, N.S. (2014b), "Evaluating topological optimized layout of building structures by using nodal material density based bilinear interpolation", J. Asian Arch. Build. Eng., 13(2), 421-428. https://doi.org/10.3130/jaabe.13.421

Cited by

  1. A constant strain triangle element oriented multi-material topology optimization with a moved and regularized Heaviside function vol.79, pp.1, 2021, https://doi.org/10.12989/sem.2021.79.1.097