DOI QR코드

DOI QR Code

Human Papillomavirus Genotype Distribution among Thai Women with High-Grade Cervical Intraepithelial Lesions and Invasive Cervical Cancer: a Literature Review

  • Kietpeerakool, Chumnan (Department of Obstetrics and Gynaecology, Faculty of Medicine, Khon Kaen University) ;
  • Kleebkaow, Pilaiwan (Department of Obstetrics and Gynaecology, Faculty of Medicine, Khon Kaen University) ;
  • Srisomboon, Jatupol (Department of Obstetrics and Gynaecology, Faculty of Medicine, Chiang Mai University)
  • Published : 2015.08.03

Abstract

Infection with high-risk human papillomavirus (HR-HPV) is an essential cause of cervical cancer. Because of substantial geographical variation in the HPV genotype distribution, data regarding HPV type-specific prevalence for a particular country are mandatory for providing baseline information to estimate effectiveness of currently implemented HPV-based cervical cancer prevention. Accordingly, this review was conducted to evaluate the HR-HPV genotype distribution among Thai women with precancerous cervical lesions i.e. cervical intraepithelial neoplasia grade 2-3 (CIN 2-3), adenocarcinoma in situ (AIS), and invasive cervical cancer by reviewing the available literature. The prevalence of HR-HPV infection among Thai women with CIN 2-3 ranged from 64.8% to 90.1% and the three most common genotypes were HPV 16 (38.5%), HPV 58 (20.0%), and HPV 18 (5.5%). There were high squamous cell carcinoma/CIN 2-3 prevalence ratios in women with CIN 2-3 infected with HPV 33 and HPV 58 (1.40 and 1.38, respectively), emphasizing the importance of these subtypes in the risk of progression to invasive cancer among Thai women. Data regarding the prevalence and genotype distribution of HR-HPV in Thai women with AIS remain unavailable. Interesting findings about the distribution of HPV genotype in cervical cancer among Thai women include: (1) a relatively high prevalence of HPV 52 and HPV 58 in invasive squamous cell carcinoma; (2) the prevalence of HPV 18-related adenocarcinoma is almost double thepreviously reported prevalence, and (3) 75% of neuroendocrine carcinomas are HPV18-positive when taking into account both single and multiple infections.

Keywords

References

  1. Andersson S, Mints M, Wilander E (2013). Results of cytology and high-risk human papillomavirus testing in females with cervical adenocarcinoma. Oncol Lett, 6, 215-9.
  2. Aromseree S, Chaiwongkot A, Ekalaksananan T, et al (2014). The three most common human papillomavirus oncogenic types and their integration state in Thai women with cervical precancerous lesions and carcinomas. J Med Virol, 86, 1911-9. https://doi.org/10.1002/jmv.24034
  3. Ault K A, Joura EA, Kjaer SK, et al (2011). Adenocarcinoma in situ and associated human papillomavirus type distribution observed in two clinical trials of a quadrivalent human papillomavirus vaccine. Int J Cancer, 128, 1344-53. https://doi.org/10.1002/ijc.25723
  4. Chinchai T, Chansaenroj J, Swangvaree S, et al (2012). Prevalence of human papillomavirus genotypes in cervical cancer. Int J Gynecol Cancer, 22, 1063-8. https://doi.org/10.1097/IGC.0b013e318259d904
  5. Clifford GM, Smith JS, Aguado T, et al (2003). Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br J Cancer, 89, 101-5. https://doi.org/10.1038/sj.bjc.6601024
  6. Cooke A, Smith D, Booth A (2012). Beyond PICO: the SPIDER tool for qualitative evidence synthesis. Qual Health Res, 22, 1435-43. https://doi.org/10.1177/1049732312452938
  7. Cutts FT, Franceschi S, Goldie S, et al (2007). Human papillomavirus and HPV vaccines: a review. Bull World Health Organ, 85, 719-26. https://doi.org/10.2471/BLT.06.038414
  8. IARC monographs on the evaluation of carcinogenic risks to humans, volume 90, human papillomaviruses. Lyon: International Agency for Research on Cancer; 2006.
  9. Ishida GM, Kato N, Hayasaka T, et al (2004). Small cell neuroendocrine carcinomas of the uterine cervix: a histological, immunohistochemical, and molecular genetic study. Int J Gynecol Pathol, 23, 366-72. https://doi.org/10.1097/01.pgp.0000139637.01977.61
  10. Kietpeerakool C, Srisomboon J, Prompittayarat W, et al (2006). Can adenocarcinoma in situ of the uterine cervix be predicted before cervical conization? Asian Pac J Cancer Prev, 7, 522-4.
  11. Li N, Franceschi S, Howell-Jones R, et al (2011). Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. Int J Cancer, 128, 927-35. https://doi.org/10.1002/ijc.25396
  12. Massad LS, Einstein MH, Huh WK, et al (2013). 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet Gynecol, 121, 829-46. https://doi.org/10.1097/AOG.0b013e3182883a34
  13. Masumoto N, Fujii T, Ishikawa M, et al (2003). P16 overexpression and human papillomavirus infection in small cell carcinoma of the uterine cervix. Hum Pathol, 34, 778-83. https://doi.org/10.1016/S0046-8177(03)00284-3
  14. Natphopsuk S, Settheetham-Ishida W, Pientong C, et al (2013). Human papillomavirus genotypes and cervical cancer in northeast Thailand. Asian Pac J Cancer Prev, 14, 6961-4. https://doi.org/10.7314/APJCP.2013.14.11.6961
  15. Quint KD, de Koning MN, van Doorn LJ, et al (2010). HPV genotyping and HPV16 variant analysis in glandular and squamous neoplastic lesions of the uterine cervix. Gynecol Oncol, 117, 297-301. https://doi.org/10.1016/j.ygyno.2010.02.003
  16. Rabelo-Santos SH, Derchain SF, Villa LL, et al (2009). Human papillomavirus-specific genotypes in cervical lesions of women referred for smears with atypical glandular cells or adenocarcinoma in situ. Int J Gynecol Pathol, 28, 272-8. https://doi.org/10.1097/PGP.0b013e318190ed27
  17. Siriaunkgul S, Suwiwat S, Settakorn J, et al (2008). HPV genotyping in cervical cancer in Northern Thailand: adapting the linear array HPV assay for use on paraffin-embedded tissue. Gynecol Oncol, 108, 555-60. https://doi.org/10.1016/j.ygyno.2007.11.016
  18. Siriaunkgul S, Utaipat U, Settakorn J, et al (2011). HPV genotyping in neuroendocrine carcinoma of the uterine cervix in northern Thailand. Int J Gynaecol Obstet, 115, 175-9. https://doi.org/10.1016/j.ijgo.2011.06.010
  19. Siriaunkgul S, Utaipat U, Suthipintawong C, et al (2013). HPV genotyping in adenocarcinoma of the uterine cervix in Thailand. Int J Gynaecol Obstet, 123, 226-30. https://doi.org/10.1016/j.ijgo.2013.06.034
  20. Sjoeborg KD, Trope A, Lie AK, et al (2010). HPV genotype distribution according to severity of cervical neoplasia. Gynecol Oncol, 118, 29-34. https://doi.org/10.1016/j.ygyno.2010.03.007
  21. Srisomboon J, Kietpeerakool C, Suprasert P, et al (2007). Factors affecting residual lesion in women with cervical adenocarcinoma in situ after cone excisional biopsy. Asian Pac J Cancer Prev, 8, 225-8.
  22. Suthipintawong C, Siriaunkgul S, Tungsinmunkong K, et al (2011). Human papilloma virus prevalence, genotype distribution, and pattern of infection in Thai women. Asian Pac J Cancer Prev, 12, 853-6.
  23. Tungsinmunkong K, Suwiwat S, Sriplung H (2006). Detection of human papillomavirus in intraepithelial lesions and carcinoma of the cervix uteri in southern Thai women. Asian Pac J Cancer Prev, 7, 427-30.
  24. Wang KL, Yang YC, Wang TY, et al (2006). Neuroendocrine carcinoma of the uterine cervix: A clinicopathologic retrospective study of 31 cases with prognostic implications. J Chemother, 18, 209-16. https://doi.org/10.1179/joc.2006.18.2.209
  25. Zaino RJ (2002). Symposium part I: adenocarcinoma in situ, glandular dysplasia, and early invasive adenocarcinoma of the uterine cervix. Int J Gynecol Pathol, 21, 314-26. https://doi.org/10.1097/00004347-200210000-00002

Cited by

  1. Causative agents, diseases, epidemiology and diagnosis of sexually transmitted infections vol.28, pp.1, 2017, https://doi.org/10.1097/MRM.0000000000000089
  2. Esophageal squamous cell carcinomas in a Malaysian cohort show a lack of association with human papillomavirus vol.19, pp.5, 2018, https://doi.org/10.1111/1751-2980.12605