DOI QR코드

DOI QR Code

A Pilot Genome-wide Association Study of Breast Cancer Susceptibility Loci in Indonesia

  • Published : 2015.04.03

Abstract

Genome-wide association studies (GWASs) of the entire genome provide a systematic approach for revealing novel genetic susceptibility loci for breast cancer. However, genetic association studies have hitherto been primarily conducted in women of European ancestry. Therefofre we here performed a pilot GWAS with a single nucleotide polymorphism (SNP) array 5.0 platform from $Affymetrix^{(R)}$ that contains 443,813 SNPs to search for new genetic risk factors in 89 breast cancer cases and 46 healthy women of Indonesian ancestry. The case-control association of the GWAS finding set was evaluated using PLINK. The strengths of allelic and genotypic associations were assessed using logistic regression analysis and reported as odds ratios (ORs) and P values; P values less than $1.00{\times}10^{-8}$ and $5.00{\times}10^{-5}$ were required for significant association and suggestive association, respectively. After analyzing 292,887 SNPs, we recognized 11 chromosome loci that possessed suggestive associations with breast cancer risk. Of these, however, there were only four chromosome loci with identified genes: chromosome 2p.12 with the CTNNA2 gene [Odds ratio (OR)=1.20, 95% confidence interval (CI)=1.13-1.33, $P=1.08{\times}10^{-7}$]; chromosome 18p11.2 with the SOGA2 gene (OR=1.32, 95%CI=1.17-1.44, $P=6.88{\times}10^{-6}$); chromosome 5q14.1 with the SSBP2 gene (OR=1.22, 95%CI=1.11-1.34, $P=4.00{\times}10^{-5}$); and chromosome 9q31.1 with the TEX10 gene (OR=1.24, 95%CI=1.12-1.35, $P=4.68{\times}10^{-5}$). This study identified 11 chromosome loci which exhibited suggestive associations with the risk of breast cancer among Indonesian women.

Keywords

References

  1. Antoniou AC, Wang X, Fredericksen ZS, et al (2010). A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet, 42, 885-92. https://doi.org/10.1038/ng.669
  2. Ahmed S, Thomas G, Ghoussaini M, et al (2009). Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet, 41, 585-90. https://doi.org/10.1038/ng.354
  3. Balmain A, Gray J, Ponder B (2003). The genetics and genomics of cancer. Nat Genet, 33, 238-44. https://doi.org/10.1038/ng1107
  4. Crown Human Genome Center, Department of Molecular Genetics, the Weizmann Institute of Science. 2014. Catenin (cadherin-associated protein), alpha 2. Accessed August 2, 2014, at http://www.genecards.org/cgi-bin/carddisp.pl?gene=CTNNA2.
  5. Crown Human Genome Center, Department of Molecular Genetics, the Weizmann Institute of Science. 2014. Testis expressed 10. Accessed August 2, 2014, at http://www.genecards.org/cgi-bin/carddisp.pl?gene=TEX10.
  6. Easton DF, Pooley KA, Dunning AM, et al (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447, 1087-93. https://doi.org/10.1038/nature05887
  7. Fanjul-Fernandez M, Quesada V, Cabanillas R, et al (2013). Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumor suppressors frequently mutated in laryngeal carcinomas. Nat Commun, 4, 2351.
  8. Fletcher O, Johnson N, Orr N, et al (2011). Novel breast cancer susceptibility locis at 9q31.2: results of a genome-wide association study. J Natl Cancer Inst, 103, 425-35. https://doi.org/10.1093/jnci/djq563
  9. Gaudet MM, Kirchhoff T, Green T, et al (2010). Common genetic variants and modification of penetrance of BRCA2-associated breast cancer. PLoS Gene, 6, 1001183. https://doi.org/10.1371/journal.pgen.1001183
  10. Gold B, Kirchhoff T, Stefanov S, et al (2008). Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.23. Proc Natl Acad Sci USA, 105, 4340-5. https://doi.org/10.1073/pnas.0800441105
  11. Guan YP, Yang XX, Yao GY, et al (2014). Breast cancer association studies in a Han Chinese population using 10 European-ancestry-associated breast cancer susceptibility SNPs. Asian Pac J Cancer Prev, 15, 85-91. https://doi.org/10.7314/APJCP.2014.15.1.85
  12. Hunter DJ, Kraft P, Jacobs KB, et al (2007). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet, 39, 870-4. https://doi.org/10.1038/ng2075
  13. Iodice S, Barile M, Rotmensz N, et al (2010). Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer, 46, 2275-84. https://doi.org/10.1016/j.ejca.2010.04.018
  14. Islam T, Ito H, Sueta A, et al (2013). Alcohol and dietary folate intake and the risk of breast cancer: a case-control study in Japan. Eur J Cancer Prev, 22, 358-66. https://doi.org/10.1097/CEJ.0b013e32835b6a60
  15. Kim HC, Lee JY, Sung H, et al (2012). A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Strudy. Breast Cancer Research, 14, 56.
  16. Liang H, Samanta S, Nagarajan L (2005). SSBP2, a candidate tumor suppressor genem induces growth arrest and differentiation of myeloid leukemia cells. Oncogene, 24, 2625-34. https://doi.org/10.1038/sj.onc.1208167
  17. Long J, Cai Q, Shu XO, et al (2010). Identification of a functional genetic variant at 16q12.1 for breast cancer risk: results from the asia breast cancer consortium. PLoS Genet, 6, 1001002. https://doi.org/10.1371/journal.pgen.1001002
  18. Mahdi KM, Nassiri MR, Nasiri K (2013). Hereditary genes and SNPs associated with breast cancer. Asian Pac J Cancer Prev, 14, 3403-9. https://doi.org/10.7314/APJCP.2013.14.6.3403
  19. Nathanson KL, Wosster R, Weber BL (2001). Breast cancer genetics: what we know and what we need. Nat Med, 7, 552-6. https://doi.org/10.1038/87876
  20. Ng CH, Pathy NB, Taib NA, et al (2011). Comparison of breast cancer in Indonesia and Malaysia . a clinico-pathological study between Dharmais Cancer Centre Jakarta and University Malaya Medical Centre, Kuala Lumpur. Asian Pacific J Cancer Prev, 12, 2943-6.
  21. Phipps AI, Chlebowski RT, Prentice R, et al (2011). Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer. J Natl Cancer Inst, 103, 1-8. https://doi.org/10.1093/jnci/djq540
  22. Stacey SN, Manolescu A, Sulem P, et al (2007). Common variants on chromosome 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet, 39, 865-9. https://doi.org/10.1038/ng2064
  23. Stacey SN, Manolescu A, Sulem P, et al (2008). Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet, 40, 703-6. https://doi.org/10.1038/ng.131
  24. Shu XO, Long J, Lu W, et al (2012). Novel genetic markers of breast cancer survival identified by a genome-wide association study. Cancer Res, 72, 1182-9. https://doi.org/10.1158/0008-5472.CAN-11-2561
  25. The National Center for Biotechnology Information. 2014. CTNNA2 catenin (cadherin-associated protein), alpha 2. Accessed August 2, 2014, at http://www.ncbi.nlm.nih.gov/gene/1496.
  26. The National Center for Biotechnology Information. 2014. MTCL1 microtubule crosslinking factor 1. Accessed August 2, 2014, at http://www.ncbi.nlm.nih.gov/gene/23255.
  27. The National Center for Biotechnology Information. 2014. SSBP2 single-stranded DNA binding protein 2. Accessed August 2, 2014, at http://www.ncbi.nlm.nih.gov/gene/23635.
  28. The National Center for Biotechnology Information. 2014. TEX10 testis expressed 10. Accessed August 2, 2014, at http://www.ncbi.nlm.nih.gov/gene/54881.
  29. Thomas G, Jacobs KB, Kraft P, et al (2009). A multi-stage genome-wide association in breast cancer identifies two novel risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet, 41, 579-84. https://doi.org/10.1038/ng.353
  30. Tjindarbumi D, Mangunkusumo R (2002). Cancer in Indonesia, present and future. Jpn J Clin Oncol, 32, 17-21. https://doi.org/10.1093/jjco/hye123
  31. Turnbull C, Ahmed S, Morrison J, et al (2010). Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet, 42, 504-7. https://doi.org/10.1038/ng.586
  32. Xiao Y, Decker PA, Rice T, et al (2012). SSBP2 variants are associated with survival in glioblastoma patients. Clin Cancer Res, 18, 3154-62. https://doi.org/10.1158/1078-0432.CCR-11-2778
  33. Yoshitake H, Yokoi H, Ishikawa H, et al (2012). Overexpression of TEX10, a potential novel cancer marker, in head and neck squamous cell carcinoma. Cancer Biomark, 12, 141-8.
  34. Zhang B, Beeghly-fadiel A, Long J, et al (2011). Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol, 12, 477-88. https://doi.org/10.1016/S1470-2045(11)70076-6
  35. Zheng W, Long J, Gao YT, et al (2009). Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1. Nat Genet, 41, 324-8. https://doi.org/10.1038/ng.318
  36. Zheng W, Cai Q, Signorello LB, et al (2009). Evaluation of 11 breast cancer susceptibility loci in African-American women. Cancer Epidemiol Biomarkers Prev, 18, 2761-4. https://doi.org/10.1158/1055-9965.EPI-09-0624
  37. Zheng W, Wen W, Gao YT, et al (2010). Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women. J Natl Cancer Inst, 102, 972-81. https://doi.org/10.1093/jnci/djq170

Cited by

  1. BRCA1 Gene Mutation Screening for the Hereditary Breast and/or Ovarian Cancer Syndrome in Breast Cancer Cases: a First High Resolution DNA Melting Analysis in Indonesia vol.17, pp.3, 2016, https://doi.org/10.7314/APJCP.2016.17.3.1539
  2. Improving the detection of pathways in genome-wide association studies by combined effects of SNPs from Linkage Disequilibrium blocks vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03826-2