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Introduction

Breast cancer is the most prevalent malignancy in 
women around the world (Chauhan et al., 2011; Kanaga et 
al., 2011; Akhtari-Zavare et al., 2014; Erbil and Bolukbas, 
2014; Bouguerra et al., 2014; Fallahzadeh et al., 2014; 
Karadag et al., 2014; Sathian et al., 2014; Sreedevi et al., 
2014; Zhu et al., 2014). Breast cancer comprises 23% of 
all cancer cases diagnosed across the globe (Jemal et al., 
2011). About one in 12 women in the West develop breast 
cancer at some point in their life (Antoniou et al., 2003).  
Breast cancer can have a varied presentation with vast 
diversities in its morphological characteristics, clinical 
outcomes, subtypes and prevalence trends (Al-Tamimi 
et al., 2010).

Among the major risk factors associated with breast 
cancer, the most important is age followed by a positive 
family history for breast cancer (Ravichandran et al., 2010; 
Rosmawati, 2010; Shallwani et al., 2010; Sreedharan et al., 
2010; Badar et al., 2011; Serey et al., 2011; Norsa’adah 
et al., 2012; Wu et al., 2012; Norlaili et al., 2013; Radi, 
2013). It is estimated that 5%-10% of all breast cancer 
cases in women are linked to hereditary susceptibility 
due to mutations in autosomal dominant genes (Loman et 
al., 1998). The genetic variations found in female breast 
cancer fall into two distinct categories. The first of which 
is gain-of-function mutations in the proto-oncogenes 
which provoke the cell to grow and divide; and the other 
is loss-of-function mutations in tumor suppressor genes 
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which result in uncontrollable cell growth, inability to 
repair DNA after damage and lack of cell cycle check 
points. Women who inherit loss-of-function mutations 
have a 70% chance of developing invasive breast cancer 
by the time they are 70 years old (Loman et al., 1998). The 
two key players associated with high breast cancer risk 
are mutations in BRCA 1 and BRCA 2. Sixteen percent of 
all hereditary breast cancers can be credited to germ-line 
mutations in BRCA 1 and 2 (van der Groep et al., 2011). 
Around three to five percent of breast cancer cases have 
been attributed to mutations in BRCA1 and BRCA2 in 
the United States and Canada (Donenberg et al., 2011).  
These are tumor suppressor genes because the wild type 
alleles of these genes are found to be absent in tumors 
from heterozygous carriers. BRCA proteins have a role 
in transcriptional regulation and DNA recombination. 

Another highly important mutation can occur in 
TP53 resulting in a triple negative breast cancer, which 
is the most aggressive breast cancer sub-group whose 
management presents as a medical challenge. TP53, 
STK11, PTEN, ATM and NBS1 are involved in multiple 
cancer syndromes for instance Li-Fraumeni (TP53), Peutz 
Jeghers (STK11/LKB1), Cowden syndrome (PTEN), 
Louis-Bar Syndrome (ATM) and Nijmegan Breakage 
Syndrome (NBS1). The great majority of breast cancer 
cases are not related to a mutated gene of high penetrance 
like BRCA1, BRCA2 and TP53. Genes of low penetrance 
such as CHEK2, CDH1, NBS1, RAD50, BRIP1 and 
PALB2, which are frequently mutated in the general 



Asfandyar Sheikh et al

Asian Pacific Journal of Cancer Prevention, Vol 16, 20152178

population, contribute most in breast cancer development. 
In this review, we discuss the entire spectrum of mutations 
which are associated with breast cancer. We talk about 
each gene mutation individually and then highlight how 
it leads to the manifestation of disease. We start with the 
more popular genes involved first and then move on to 
the rarer mutations.

BRCA1

BRCA1 gene carries utmost importance in the 
hereditary susceptibility associated with the development 
of breast cancer. Its association with breast cancer was 
established when a pedigree study of a large group of early 
onset breast cancer families was done (Hall et al., 1990). 

BRCA1 gene is located on chromosome 17q and it 
comprises of 22 coding exons (Hall et al., 1990; Miki et al., 
1994). It encodes for an extremely large protein molecule 
which consists of 1863 amino acids (Miki et al., 1994). 
The BRCA1 protein in humans has four main domains: 
The RING zinc finger domain, two BRCT domains and 
the serine domain (Bertwistle and Ashworth, 1998; Shuen 
and Foulkes, 2011). At the amino terminal of the protein, 
a RING zinc finger domain is present which interacts with 
another RING domain containing protein called BARD1 
(Chen et al., 2002). The BRCA1/BARD1 complex carries 
E3 ligase activity which is responsible for ubiquitination 
(Chen et al., 2002). 

At the carboxyl terminal, there are 2 BRCT repeats 
which are considered to activate transcription of reporter 
genes once they attach to a GAL 4 DNA binding domain 
and hence regulate transcriptional activation (Chapman 
and Verma, 1996). Moreover, the 2 BRCT repeats are 
not only thought to bind to phospho-peptides which 
participate in DNA repair and cell cycle check points but 
they also interact with other proteins like BACH1,CtIP, 
RAP80 and CCDC98 (Rodriguez and Songyang, 2008). 
The serine domain has numerous phosphorylation sites 
which get phosphorylated by ATM kinases (Clark et al., 
2012). The ATM kinases get activated when there is a 
DNA insult. Thereafter, the BRCA protein would attempt 
to localize the site of DNA damage (Clark et al., 2012). 
In addition, BRCA1 also gets fused to RAD51 and gets 
phosphorylated. This interaction between BRCA1 and 
RAD51 suggests a possible participation in the detection 
and recombination of double stranded breaks (DSBs) (van 
der Groep et al., 2011). 

There appears to be no mutation ‘hot spots’ in the 
BRCA1 gene sequence (van der Groep et al., 2011). A 
total of 1,639 different mutations and polymorphisms in 
BRCA1 genes have been reported by the Breast Cancer 
Information Core (BIC) 2010 database (van der Groep et 
al., 2011). These mutations can arise due to small frame 
shifts, nonsense mutations, splice-site mutations and 
deletions. All of these mutations result in a shortened 
BRCA1 protein which fails to perform its physiologic 
function (van der Groep et al., 2011). Recently, TERT-
locus SNPs (single nucleotide polymorphisms) and 
leukocyte telomere lengths have been thought to augment 
the risk of breast cancers in BRCA1 mutation carrier. 
(Bojesen et al., 2013). Moreover, the extremely aggressive 

triple negative breast cancer has also been linked to 
sporadic mutations in BRCA1 (Gonzalez-Angulo et al., 
2011; Fostira et al., 2012).

BRCA2

BRCA2 gene is found on chromosome 13q (Wooster 
et al., 1994). It consists of 26 coding exons which code 
for a protein molecule comprising of 3418 amino acids 
(Wooster et al., 1995; Joosse, 2012). There are eight copies 
of 30-80 amino acid repeat in a part of the protein which is 
coded by the unusually long exon 11 (Bork et al., 1996). 
This repeat motif is the most striking characteristic of the 
BRCA2 protein and is present in the central third of the 
BRCA2 protein. It is termed as the BRC domain (Bork 
et al., 1996; Warner et al., 2011; Zhang et al., 2011). This 
BRC domain serves as a binding site for Rad51 (Chen et 
al., 1998; Walsh et al., 2010). 

Another location on the BRCA2 protein which serves 
as a binding site for Rad51 is the carboxyl terminal 
region of BRCA2 termed TR2 (Mizuta et al., 1997). This 
section of the protein is believed to play a significant role 
in recombination repair (Davies and Pellegrin, 2007). 
On the other hand, PALB2 interacts with the amino-
terminal of the BRCA2 and leads to increased stability 
of BRCA2 in nuclear structures (Xia et al., 2006). This 
enables BRCA2 to undertake DNA repair at the S phase 
check point (Zhang et al., 2009). BRCA2 also has an 
involvement in the homologous recombination (HR) in 
meiosis via an interaction with RAD51 and DMC1 (van 
der Groep et al., 2011). BRCA2 fuses with the single 
strand DNA (ssDNA) and directly interacts with RAD51 
to provoke strand invasion an essential step of homologous 
recombination. Strand invasion is a process in which the 
broken ssDNA and Rad51 complex recognizes a section of 
homology in intact duplex DNA. The broken single-strand 
DNA displaces one of the template strands, pairs with its 
complement and hence produces a duplex. 

Along with breast cancer, biallelic mutations in 
BRCA2 can cause a rare disorder called Fanconi Anemia 
(FA-D1) (Ripperger et al., 2009). Fanconi Anemia 
is characterized by congenital defects, bone marrow 
failure and chromosomal instability. The Breast Cancer 
Information Core (BIC) database has reported 1,853 
unique mutations, polymorphisms and variants in the 
BRCA2 genes (van der Groep et al., 2011). The results 
of some studies have revealed that there is a link between 
loss of heterozygosity (LOH) of the wild type allele 
and breast cancer in 80% of cases (Collins et al., 1995). 
Hypermethylation in the BRCA promoter region is very 
uncommon and occurs only rarely in BRCA1 and BRCA2 
related breast tumors (Esteller et al., 2001).

CDH1

The cellular adhesion molecule E-cadherin is encoded 
by the CDH1 gene which is located on chromosome 16q 
(Natt et al., 1989). It fulfills a critical role in the formation 
of normal cellular architecture, maintenance of tissue 
integrity and function of epithelial tissues. In addition, 
it is also considered a tumor suppressor of breast cancer 
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(Berx and van Roy, 2001). E-cadherin is glycoprotein 
with three domains (Cleton-Jansen, 2002). There is an 
extracellular domain comprising of five cadherin repeats, 
a single transmembrane domain and a cytoplasmic domain 
that interacts with beta-catenin and p120-catenin. Beta-
catenin can, in turn, bind to alpha catenin which helps 
to anchor E-cadherin to the actin cytoskeleton (Clenton-
Jansen, 2002). Most of the mutations in infiltrating 
lobular carcinoma are either of the frameshift or nonsense 
type (Berx et al., 1995). These mutations result in the 
production of a non-functional E-cadherin molecule with 
decreased adhesion activity. 

It is also known that loss of heterozygosity (LOH) at 
the long arm of chromosome 16 leads to carcinomas of 
the breast (Cleton-Jansen et al., 2001). LOH is considered 
an important mutational event for the E-cadherin 
alleles of lobular breast cancers (Cleton-Jansen et al., 
2001). However, for ductal carcinomas of the breast 
no E-cadherin mutations have been thus far recorded 
despite the fact these tumors show markedly decreased 
E-cadherin  protein expression (Cleton-Jansen, 2002). 
This decreased protein expression can probably be 
attributed to hypermethylation, chromatin rearrangements 
and alterations in trans-factor binding (Hennig et al., 
1996). Hypermethylation of the CDH1 promoter and 
the overlapping 5CpG island is believed to result in the 
decreased E-cadherin expression at the transcriptional 
level for ductal breast cancers (Hennig et al., 1996). The 
reduced E-cadherin function and expression have been 
associated with cancer metastasis. Due to the loss of the 
adhesion molecule, there is an increase in cellular motility 
which allows the cancer cells to cross the basement 
membrane and invade the nearby tissues (Chong et al., 
2011; Schrader et al., 2011; Benusiglio et al., 2013; Heitzer 
et al., 2013)

TP53

P53 is a tumor-suppressor protein which due to mutated 
alleles holds the significance of eliciting breast cancer in 
middle-aged women in a ratio almost equal to that caused 
by the mutations in BRCA1. The gene is located on the 
short arm of chromosome 17 (17p13) (Kern et al., 1991). It 
has been reported to be linked with RB1 pathways and has 
also been in favor of phosphorylation techniques keenly 
embedded within its complex biochemical structure. 
TP53 is also associated with other syndromes such as 
Li-Fraumeni Syndrome which may be because of the 
presence of a single functional copy of the gene in the 
individual (Varley, 2003). TP53 in individuals associated 
with Li-Fraumeni Syndrome have been reported to be 
quite less, but in cases where they have been reported 
together resulted in early onset of severe breast cancer 
(Varley, 2003). 

The TP53 gene is responsible for various factors; 
proficiently those which are involved in cell cycle, cell 
repair and apoptosis. TP53 mutations have been reported 
to play a massive role in the development of 20-40% 
of breast cancers. Breast cancer may be either stromal 
or epithelial. Mutations in TP53 promote mammary 
carcinogenesis particularly of the stromal type. TP53 

mutations may also be linked to possible cases of sporadic 
breast cancer and hence may be useful in their diagnosis 
(Manie et al., 2009). In addition, a single nucleotide germ-
line mutational change from CGC to CAC at exon 10 
codon 337 of TP53 leads to an amino acid alteration from 
arginine to histidine (R337H). This missense mutation has 
been linked to early onset breast cancer. (Dick et al., 2011; 
Smith TR et al., 2011; Gomes et al., 2012; Masciari et 
al., 2012; Fostira et al., 2014; Silwal-Pandit et al., 2014).

STK11/LKB1

Breast cancer is strongly associated with mutations 
linked with Peutz-Jeghers Syndrome (PJS) (van Lier et 
al., 2011). STK11/LBK1 mutations have been found to 
be associated with estrogen-receptor positivity which 
henceforth may lead to breast cancer in susceptible 
individuals. Individuals with PJS were reported to be 
revolving around a lot of risk factors, of which the 
mutation of STK11/LBK1 may lead to breast, ovarian 
or lung cancer. Out of these, breast cancer is of pivotal 
importance in middle-aged women. Liver Kinase B protein 
(LBK1) is a tumor suppressor gene which is involved in 
a complex required for the activation of AMP-activated 
protein kinase (Luo et al., 2010). 

LKB1 is actually a mammalian homolog of c elegans 
partitioning defective PAR4 which is encoded by the 
tumor-suppressor gene, STK11 (Launonen, 2005; Durgan 
et al., 2011). This gene, as mentioned above, is one of 
the key players involved in the mutations giving rise 
to Peutz-Jeghers Syndrome (PJS). Recent studies have 
further acted upon this research declaring that mutations 
on 19p encode the threonine-kinase which is responsible 
for the PJS. This syndrome has been reported to incur a 
high susceptibility of various different kinds of cancers, 
particularly when they age 60 or above. The LBK1 protein 
is a serine-threonine kinase protein which is responsible 
for the activation of AMPK. This has attracted attention 
previously deprived in regard of cancer susceptibility 
(Launonen, 2005). Though, LBK1 acts as a tumor-
suppressor gene and may owe to suppress breast cancer 
in PJS, mutations of a single allele may result in an 
aggressive breast cancer leading to less survival chances. 
It is mainly due to the combination of the actual mutation 
which cause PJS and the loss of the homologous allele 
which may give rise to a weak battle against breast cancer. 
This is in fact apropos to the main concept of AMPK’s 
linkage with cancer. LBK1 if inactivated may lead to 
cancer of many types such as cervical, ovarian, breast, 
lung, colorectal cancer, prostate, pancreatic and biliary 
cancers (Sanchez-Cespedes et al., 2002). LBK1 may 
also be the only protein for which polarization has been 
reported to have an intimate relationship with energy 
metabolism (Williams and Brenman, 2008; Jansen et al., 
2009). 

Research studies have depicted convergence and 
conflict between the two leading factors which may 
lead to breast cancer in PJS. As also stated above, it is 
to be kept clear that LBK1 may only achieve mutations 
in individuals affected with PJS. There is no authentic 
proof or paper citing the factor as to how can AMPK be 
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activated in the presence of LBK1/STK11 mutation as 
the latter is necessarily required for its activation. Also, 
chromosomal deletions have been reported with the loss of 
LBK1 and AMPK which delineates the opinion regarding 
mitotic alterations.

AR

Androgen receptor (AR) is cytogenetically located 
on the long arm of X chromosome at position 12 (Xq12) 
(Lubahn et al., 1988). The normal function of AR gene is 
to help in the development of male sexual characteristics 
like regulating hair growth or sex drive. At a certain locus 
on the AR gene, there is a tri-nucleotide CAG repeat. 
Normally, the CAG repeats about 10 to 36 times in the AR 
gene. Several studies have tried to evaluate the relationship 
between the number of CAG repeats in the gene and the 
risk of developing breast cancer in women. However, 
their attempts have yielded conflicting results (Hao et al., 
2010). Some studies suggest that an increased number of 
CAG repeat in the region augments breast cancer risk in 
women. (Rebbeck et al., 1999; Wu et al., 2008). Other 
studies have contradictory conclusions as they report that 
fewer CAG repeats are associated with an increased risk 
of aggressive breast cancer and benign disease (Yu et al., 
2000; De Abreu et al., 2007). 

ATM

Ataxia telangiectasia mutated gene, officially 
represented as ATM, is located on the long arm of 
chromosome X between positions 22 and 23(Xq22-
Xq23) (Savitsky et al., 1995). The ATM gene provides 
instructions for making a protein that helps to control 
rate of cell division and growth (Shiloh, 2006). It is 
an important protein involved in regulation of several 
body systems, specifically nervous system and immune 
system. Moreover, it also provides assistance to cells to 
recognize their broken and damaged DNA strands (Shiloh, 
2006). The ATM protein coordinates in repairing DNA 
by activating enzymes that easily fix the broken strands. 
After the damaged strands have been efficiently repaired, 
it helps to maintain the stability of the cells’ genetic 
information (Shiloh, 2006). Some studies have pointed out 
with partial certainty that mutations in one copy of ATM 
gene, especially in people who have at least one family 
member with ataxia-telangiectasia, are associated with 
an increased risk of developing breast cancer (Ahmed 
and Rahman, 2006). Around 1% of the United States 
population carries one mutated copy of ATM gene in each 
cell (Renwick et al., 2006). 

People that have one copy of ATM gene as a result 
of gene deletions are also at a higher risk of developing 
breast cancer (Procopcova et al., 2007). Cells that are 
missing one copy of the ATM gene produce half the normal 
amount of ATM protein. The resultant truncated protein 
prevents an efficient repair of DNA damage that leads to 
accumulation of mutations (Procopcova et al., 2007). This 
accumulation of mutations results in the development of 
cancerous tumors. A study has reported that women with 
the pathogenic ATM c.7271T mutation are at a higher risk 

of developing breast cancer and the penetrance seems to be 
same as that associated with germ-line BRCA 2 mutations 
(Goldgar et al., 2011).
BARD1

BARD1 (BRCA1 associated RING domain 1) is 
located on the long arm of chromosome 2 between 
positions 34 and 35 (2q34-2q35) (Thai et al., 1998). The 
BARD1 gene provides instructions to make a protein 
for the cell growth and division. The BARD1 and 
BRCA1 protein work together to repair the damaged 
DNA (Westermark et al., 2003). Research studies show 
that the BARD1 protein binds to the BRCA1 protein. 
BARD1 stabilizes the BRCA1 protein and directs the 
BRCA1 protein to those sites where DNA strand is 
broken (Westermark et al., 2003). Both the proteins play 
a critical role in maintaining the stability of cells genetic 
information. The BARD1 protein also combines with 
another protein called TP53 to promote controlled cell 
death i.e. apoptosis or to regulate cell division (Feki et 
al., 2005).

BRIP1

The BRIP1 (BRCA1 interacting protein C-terminal 
helicase 1) gene is located on the long arm of chromosome 
17 at position 22.2 (17q22.2) (Menichini and Linial, 2001). 
Normally BRIP1 helps in repairing damaged DNA. Inside 
the nucleus, the BRIP1 interacts with the BRCA1 and 
together they rejoin broken DNA strands, preventing cells 
from accumulating the damaging mutations (Cantor et al., 
2001). BRIP1 protein acts as a helicase by attaching to the 
particular region of the DNA and temporarily separating 
the two strands. It unwinds the DNA strands at the site 
where the DNA is damaged and allows BRCA1 to reach 
the damaged site and fix it (Cantor et al., 2001). BRIP1 
plays a very important role in maintaining stability of the 
genetic information of the cell, which is why this protein 
is a tumor suppressor. Research studies show that the 
inherited mutation in the BRIP1 gene is associated with 
the increased risk of developing breast cancer (Seal et 
al., 2006; Pabalan et al., 2013). Mutation occuring in one 
copy of the gene leads to the production of abnormally 
short and non-functional version of BRIP1 protein (Lewis 
et al., 2005). When this protein is defective or missing it 
cannot interact with the BRCA1 protein and fails to repair 
the damaged DNA effectively (De Nicolo et al., 2008). 
Some studies have also found that a slight variation in a 
nucleotide in the BRIP1 gene is also associated with an 
increased risk of breast cancer (Song et al., 2007).

CHEK2

HEK2 (checkpoint kinase 2 gene) is cytogenetically 
located on the long arm of chromosome 22 at position 
12.1(22q12.1) (Chaturvedi et al., 1999). This CHEK2 
gene produces a protein called checkpoint kinase 2 
protein that works as a tumor suppressor. This protein 
becomes activated when DNA gets interrupted or 
damaged. In response to the DNA damage, it works 
together with several other proteins including TP53 
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and stops the cell from dividing. The cell has two fates: 
either the cell lives following DNA repair or undergoes 
apoptosis if the damage is severe (Chehab et al., 2000). 
In addition, CHEK2 also interacts with BRCA1 (Lee et 
al., 2000). Inherited mutated CHEK2 genes have been 
identified in cases of breast cancer (CHEK2 Breast 
Cancer Case-Control Consortium, 2004). Abnormality is 
associated with a single DNA building block at nucleotide 
location 1100delC (CHEK2 Breast Cancer Case-Control 
Consortium, 2004). This particular mutation leads to an 
abnormally short and non-functional version of CHEK2 
protein (CHEK2 Breast Cancer Case-Control Consortium, 
2004).

DIRAS3

The DIRAS3 belongs to a large family of Ras gene 
that provides instructions to make proteins that control 
cell growth and maturation. It is cytogenetically located 
at the short arm of chromosome 1 at position 31 (1p31) 
(Yu et al., 2006). This gene differs from its other family 
members in a sense that it suppresses the cell to grow while 
its other family members encourage the cell to grow. The 
DIRAS3 codes instructions for a protein located within 
the cytoplasm and in the cell membrane of normal cells 
in breast and ovaries (Luo et al., 2003). It also interacts 
with many other proteins to help control the cell growth 
and division. In each cell, one copy of DIRAS3 gene is 
inherited from mother that remains inactive throughout 
life, the other copy is inherited from father that remains 
active. This is a process called ‘genomic imprinting’ (Luo 
et al., 2001). Due to genomic imprinting the cells usually 
have only one working copy of DIRAS3 gene. If this 
copy of gene is lost or becomes inactivated then the cells 
produce little or no functional DIRAS3 protein. This in 
turn increases the susceptibility to develop breast cancer. 
Research studies suggest that DIRAS3 is often down 
regulated in breast cancer cells (Hisatomi et al., 2002).

EGFR and ERBB2

EGFR gene locus is present on chromosome 7, whilst, 
ERBB2 gene, more commonly known as Her-2/neu, 
(v-erb-b2 avian erythroblastic leukemia viral oncogene 
homolog 2) is located on the long arm of chromosome 
17 at position 12 (17q12) (Coussens et al., 1985). These 
are members of the family of epidermal growth factor 
receptors. Studies done in the Western world have 
highlighted that EGFR protein expression is present 
in about 7-36% of breast cancer patients (Lynch et al., 
2004). But gene amplification has been detected in only 
about 6% of breast cancer patients (Lynch et al., 2004). 
On the other hand, studies done in Saudi Arabia have 
reported that the incidence of EGFR protein associated 
breast cancer can be as low as 1.3%, suggesting an ethnic 
pre-disposition for EGFR associated breast cancer cases 
(Shawarby et al., 2011). 

A Saudi study demonstrated by immunohistochemistry 
that the frequency of HER2+ breast cancer cases can be 
as high as 28% (Al-Tamimi et al., 2009). In 25-30% of 
the breast cancer cases, the ERBB2 gene is amplified (Tan 

and Yu, 2007). This gene provides instructions for making 
ErbB2 growth factor receptor protein which is located on 
the surface of the cells, where it associates with similar 
kind of receptors to form a complex. ErbB2 plays a very 
important role in cell adhesion, cell specialization and 
cell mobility (Olayioye, 2001). Extra copies of this gene 
overexpress the ErbB2 receptor protein on the cell. Excess 
amount of ErbB2 receptor protein can result in the growth 
of cancerous tumors by providing continuous signals to 
the cell to divide and to grow rapidly. Over-expression 
of ErbB2 gene is associated with increased risk of breast 
tumors that are most likely to metastasize (Emens, 2005).

NBN

NBN gene is cytogenetically located on the long arm of 
chromosome 8 at position 21 (8q21) (Carney et al., 1998). 
The gene NBN provides instructions to make protein 
called nibrin that performs several functions including 
the repair of damaged DNA (Kobayashi, 2004). Nibrin 
interacts with other proteins like MRE11A and RAD50 
genes to make a protein complex (Carney et al., 1998). It 
regulates the activity of this protein complex by carrying 
itself and the other two proteins into the nucleus, and 
helps to repair the damaged DNA site. Nibrin is a tumor 
suppressor and mutations in NBN gene prevent it from 
responding to DNA damage effectively. Many recent 
studies reveal that the inherited NBN gene change is 
associated with an increased risk of developing breast 
cancer (Bogdanova et al., 2008). People with Nijmegen 
breakage syndrome have a mutated gene c.657_661del5. 
Individuals suffering from this syndrome are also at a 
three times higher risk of developing cancer (Steffen et 
al., 2006).

PALB2

PALB2 gene gives instructions for making a protein 
called partner and localizer of BRCA2. It is located at short 
arm of chromosome 16 at position 12.2 (16p12.2) (Xia et 
al., 2006). PALB2 works along with BRCA2 and prevents 
the cells from accumulating mutations by repairing broken 
strands of DNA. Gene mutation in PALB2 results in 
around two-fold increased risk of developing breast cancer 
(Rahman et al., 2007; Casadei et al., 2011). Around 10 
mutations in PALB2 gene have been identified in breast 
cancer patients (Rahman et al., 2007). These mutations 
occur in a single copy of gene in each cell and results in 
abnormally short version of PALB2 protein (Rahman et 
al., 2007). The defective PALB2 protein cannot work 
effectively with BRCA2 protein to repair the damaged 
DNA.

RAD50 and RAD51

RAD50 homolog is cytogenetically located on the long 
arm of chromosome 5 at position 31 (5q31) (Kinoshita et 
al., 2009). The RAD50 protein holds the broken strand 
of DNA together during the repairing process. To make 
a larger protein complex, it interacts with two other 
proteins that are produced from MRE11A and NBN 
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genes (Kinoshita et al., 2009). When mutation occurs in 
RAD50 gene it leads to the formation of an abnormally 
small, non-functional version of RAD50 protein. RAD51 
homolog is cytogenetically located on the long arm of 
chromosome 15 at position 15.1 (15q15.1) (Conway et al., 
2004). RAd51 protein interacts with many other proteins 
like BRCA1, BRCA2 and PALB2 to repair the damaged 
DNA (Buisson et al., 2010). BRCA2 protein transports 
the RAD51 protein to the damage sites of DNA inside the 
nucleus. Many mutations in RAD51 have been associated 
with an increased risk of developing breast cancer.

Conclusion

In this review, we have discussed the mutations in 
genes of high, moderate and low penetrance and their role 
in predisposition to breast cancer. Understanding such 
genes involved in tumorogenesis and their pathways is 
of crucial importance in development of preventative and 
therapeutic targets to fight breast cancer
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