References
- Belot N, Pochet R, Heizmann CW, Kiss R, Decaestecker C (2002). Extracellular S100A4 stimulates the migration rate of astrocytic tumor cells by modifying the rganization of their actin cytoskeleton. Biochim Biophys Acta, 1600, 74-83. https://doi.org/10.1016/S1570-9639(02)00447-8
- Boye K, Maelandsmo GM (2010). S100A4 and metastasis: a small actor playing many roles. Am J Pathol, 176, 528-35. https://doi.org/10.2353/ajpath.2010.090526
- Chen D, Zheng XF, Yang ZY, et al (2012). S100A4 silencing blocks invasive ability of esophageal squamous cell carcinoma cells. World J Gastroenterol, 18, 915-22. https://doi.org/10.3748/wjg.v18.i9.915
- Dahlmann M, Okhrimenko A, Marcinkowski P, et al (2014). RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis. Oncotarget, 5, 3220-33. https://doi.org/10.18632/oncotarget.1908
- Feng LZ, Zheng XY, Zhou LX, et al (2011). Correlation between expression of S100A4 and VEGF-C, and lymph node metastasis and prognosis in gastric carcinoma. J Int Med Res, 39, 1333-43. https://doi.org/10.1177/147323001103900420
-
Horiuchi A, Hayashi T, Kikuchi,N, et al (2012). Hypoxia upregulates ovarian cancer invasiveness via the binding of HIF-
$1{\alpha}$ to a hypoxia-induced, methylation-free hypoxia response element of S100A4 gene. Int J Cancer, 131, 1755-67. https://doi.org/10.1002/ijc.27448 - Ismail NI, Kaur G, Hashim H, Hassan MS (2008). S100A4 overexpression proves to be independent marker for breast cancer progression. Cancer Cell Int, 8, 12. https://doi.org/10.1186/1475-2867-8-12
- Jenkinson SR, Barraclough R, West CR, Rudland PS (2004). S100A4 regulates cell motility and invasion in an in vitro model for breast cancer metastasis. Br J Cancer, 90, 253-62. https://doi.org/10.1038/sj.bjc.6601483
- Jia W, Gao XJ, Zhang ZD, Yang ZX, Zhang G (2013). S100A4 silencing suppresses proliferation, angiogenesis and invasion of thyroid cancer cells through downregulation of MMP-9 and VEGF. Eur Rev Med Pharmacol Sci, 17, 1495-508.
- Kang YG, Jung CK, Lee A, Kang WK, Oh ST, Kang CS (2012). Prognostic significance of S100A4 mRNA and protein expression in colorectal cancer. J Surg Oncol, 105, 119-24. https://doi.org/10.1002/jso.22070
- Kim JH, Kim CN, Kim SY, et al (2009). Enhanced S100A4 protein expression is clinicopathologically significant to metastatic potential and p53 dysfunction in colorectal cancer. Oncol Rep, 22, 41-7.
- Liang J, Piao Y, Holmes L, et al (2014). Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res, 20, 187-98. https://doi.org/10.1158/1078-0432.CCR-13-1279
- Liu J, Guo Y, Fu S, Yang M, Sun KL, Fu WN (2010). Hypomethylation-induced expression of S100A4 increases the invasiveness of laryngeal squamous cell carcinoma. Oncol Rep, 23, 1101-7.
- Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007). WHO classification of tumors of the central nervous system, Fourth Edition IARC.
- Maelandsmo GM, Hovig E, Skrede M, et al (1996). Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme. Cancer Res, 56, 5490-8.
- Matsumoto K, Irie A, Satoh T, et al (2007). Expression of S100A2 and S100A4 predicts for disease progression and patient survival in bladder cancer. Urology, 70, 602-7. https://doi.org/10.1016/j.urology.2007.04.007
- Mishra SK, Siddique HR, Saleem M (2012). S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev, 31, 163-72. https://doi.org/10.1007/s10555-011-9338-4
-
Sack U, Walther W, Scudiero D, et al (2011). S100A4-induced cell motility and metastasis is restricted by the Wnt/
${\beta}$ -catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell, 22, 3344-54. https://doi.org/10.1091/mbc.E10-09-0739 - Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006). Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol, 2, 494-503.
- Sekine H, Chen N, Sato K, et al (2012). S100A4, frequently overexpressed in various human cancers, accelerates cell motility in pancreatic cancer cells. Biochem Biophys Res Commun, 429, 214-9. https://doi.org/10.1016/j.bbrc.2012.10.048
- Simpson PT, Shoker BS, Barraclough R, et al (2003). Examination of tumour histopathology and gene expression in a neu/S100A4 transgenic model of metastatic breast cancer. Int J Exp Pathol, 84, 173-84. https://doi.org/10.1046/j.1365-2613.2003.00350.x
- Takenaga K, Nakamura Y, Sakiyama S (1997). Expression of antisense RNA to S100A4 gene encoding an S100-related calcium-binding protein suppresses metastatic potential of high- metastatic Lewis lung carcinoma cells. Oncogene, 14, 331-7. https://doi.org/10.1038/sj.onc.1200820
- Takenaga K, Nygren J, Zelenina M, et al (2007). Modified expression of Mts1/S100A4 protein in C6 glioma cells or surrounding astrocytes affects migration of tumor cells in vitro and in vivo. Neurobiol Dis, 25, 455-63. https://doi.org/10.1016/j.nbd.2006.10.021
- Trabelsi S, Brahim DH, Ladib M (2014). Glioma epidemiology in the central Tunisian population: 1993-2012. Asian Pac J Cancer Prev, 15, 8753-7. https://doi.org/10.7314/APJCP.2014.15.20.8753
- Tsukamoto N, Egawa S, Akada M, et al (2013). The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas, 42, 1027-33. https://doi.org/10.1097/MPA.0b013e31828804e7
- Walker DG, Duan W, Kaye AH, Lavin MF (1995). Homozygous deletions of the MTS1 gene are rare in non-astrocytic brain tumors. Biochem Biophys Res Commun, 211, 404-9. https://doi.org/10.1006/bbrc.1995.1828
- Wang H, Duan L, Zou Z, et al (2014). Activation of the PI3K/Akt/mTOR/p70S6K pathway is involved in S100A4-induced viability and migration in colorectal cancer cells. Int J Med Sci, 11, 841-9. https://doi.org/10.7150/ijms.8128
- Xie R, Schlumbrecht MP, Shipley GL, Xie S, Bassett RL Jr., Broaddus RR (2009). S100A4 mediates endometrial cancer invasion and is a target of TGF-beta1 signaling. Lab Invest, 89, 937-47. https://doi.org/10.1038/labinvest.2009.52
- Xu X, Su B, Xie C, et al (2014). Sonic hedgehog-gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells. PLoS One, 9, 96441. https://doi.org/10.1371/journal.pone.0096441
- Yang H, Zhao K, Yu Q, Wang X, Song Y, Li R (2012). Evaluation of plasma and tissue S100A4 protein and mRNA levels as potential markers of metastasis and prognosis in clear cell renal cell carcinoma. J Int Med Res, 40, 475-85. https://doi.org/10.1177/147323001204000209
- Zhang G, Li M, Jin J, Bai Y, Yang C (2011). Knockdown of S100A4 decreases tumorigenesis and metastasis in osteosarcoma cells by repression of matrix metalloproteinase-9. Asian Pac J Cancer Prev, 12, 2075-80.
- Zhang HY, Zheng XZ, Wang XH, Xuan XY, Wang F, Li SS (2012a). S100A4 mediated cell invasion and metastasis of esophageal squamous cell carcinoma via the regulation of MMP-2 and E-cadherin activity. Mol Biol Rep, 39, 199-208. https://doi.org/10.1007/s11033-011-0726-1
- Zhang K, Zhang M, Zhao H, Yan B, Zhang D, Liang J (2012). S100A4 regulates motility and invasiveness of human esophageal squamous cell carcinoma through modulating the AKT/Slug signal pathway. Dis Esophagus, 25, 731-9. https://doi.org/10.1111/j.1442-2050.2012.01323.x
- Zhao Y, Zhang T, Wang Q (2013). S100 calcium-binding protein A4 is a novel independent prognostic factor for the poor prognosis of gastric carcinomas. Oncol Rep, 30, 111-8.
Cited by
- Serum levels of S100A6 are unaltered in patients with resectable cholangiocarcinoma vol.5, pp.1, 2016, https://doi.org/10.1186/s40169-016-0120-7
- Antagonistic Effects of Endogenous Nitric Oxide in a Glioblastoma Photodynamic Therapy Model vol.92, pp.6, 2016, https://doi.org/10.1111/php.12636
- Voltage-gated calcium channels: Novel targets for cancer therapy vol.14, pp.2, 2017, https://doi.org/10.3892/ol.2017.6457