DOI QR코드

DOI QR Code

Analysis of Factors Influencing Fire Damage to Concrete Using Nonlinear Resonance Vibration Method

비선형 공진기법을 이용한 콘크리트의 화재 손상 영향인자 분석

  • 박강규 (한국과학기술원 건설 및 환경공학과) ;
  • 박선종 (한국과학기술원 건설 및 환경공학과) ;
  • 임홍재 (경북대학교 과학기술대학 건설방재공학부) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과)
  • Received : 2015.02.09
  • Accepted : 2015.03.24
  • Published : 2015.04.30

Abstract

In this study, the effects of different mix proportions and fire scenarios (exposure temperatures and post-fire-curing periods) on fire-damaged concrete were analyzed using a nonlinear resonance vibration method based on nonlinear acoustics. The hysteretic nonlinearity parameter was obtained, which can sensitively reflect the damage level of fire-damaged concrete. In addition, a splitting tensile strength test was performed on each fire-damaged specimen to evaluate the residual property. Using the results, a prediction model for estimating the residual strength of fire-damaged concrete was proposed on the basis of the correlation between the hysteretic nonlinearity parameter and the ratio of splitting tensile strength.

본 연구에서는 비선형 음향효과를 기반으로 한 비선형 공진기법을 도입하여 콘크리트의 배합비 및 화재 손상 조건(노출온도, 손상 후 경과기간)이 화재 손상 콘크리트에 미치는 영향을 파악하였다. 도입된 비선형 공진기법을 통해 기존 선형 탄성파 기반 평가 기법 대비 향상된 민감도를 나타내는 비선형인자를 측정하였으며, 쪼갬 인장강도 측정을 통해 배합비 및 화재 손상 조건에 따른 콘크리트의 잔존재료물성 평가를 수행하였다. 얻어진 결과를 토대로 배합비, 노출온도, 손상 후 경과기간이 화재 손상 콘크리트에 미치는 영향을 분석하였다. 추가적으로 쪼갬 인장강도비와 비선형인자의 직접적인 관계를 제시하였으며, 비선형 공진기법을 이용한 화재 손상 콘크리트의 잔존 강도 추정에 대한 가능성을 확인하였다.

Keywords

References

  1. Z. P. Bazant and M. F. Kaplan, "Concrete at high temperatures: material properties and mathematical models," Longman Group Limited, England, (1996)
  2. M. Colombo and R. Felicetti, "New "NDT techniques for the assessment of fire-damaged concrete structures," Fire Safety Journal, Vol. 42, No. 6, pp. 461-472 (2007) https://doi.org/10.1016/j.firesaf.2006.09.002
  3. H. J. Yim, J. H. Kim, S. J. Park and H. G. Park, "Characterization of thermally damaged concrete using a nonlinear ultrasonic method," Cement and Concrete Research, Vol. 42, No. 11, pp. 1438-1446 (2012) https://doi.org/10.1016/j.cemconres.2012.08.006
  4. S. J. Park, H. J. Yim and H. G. Kwak, "Evaluation of microcracks in thermal damaged concrete using nonlinear ultrasonic modulation technique," Journal of the Korea Concrete Institute, Vol. 24, No. 6, pp. 651-658 (2012) https://doi.org/10.4334/JKCI.2012.24.6.651
  5. M. Y. Chew, "The assessment of fire damage concrete," Building and Environment, Vol. 28, No. 1, pp. 97-102 (1993) https://doi.org/10.1016/0360-1323(93)90010-Z
  6. H. J. Yim, S. J. Park and H. G. Kwak, "Nonlinear acoustic methods for nondestructive evaluation of damaged concrete structures," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 17, No. 3, pp. 47-55 (2013)
  7. H. Yang, Y. Lin, C. Hsiao and J. Y. Liu, "Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity," Fire Safety Journal, Vol. 44, No. 1, pp. 121-130 (2009) https://doi.org/10.1016/j.firesaf.2008.05.003
  8. G. Epasto. E. Proverbio and V. Venturi, "Evaluation of fire-damaged concrete using impact-echo method," Materials and structures, Vol. 43, No. 1-2, pp. 235-245 (2010) https://doi.org/10.1617/s11527-009-9484-0
  9. A. Shah and Y. Ribakov, "Non-linear ultrasonic evaluation of damaged concrete based on higher order harmonic generation," Materials & Design, Vol. 30, No. 10, pp. 4095-4102 (2009) https://doi.org/10.1016/j.matdes.2009.05.009
  10. I. Y. Solodov, "Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications," Ultrasonics, Vol. 36, No. 1, pp. 383-390 (1997) https://doi.org/10.1016/S0041-624X(97)00041-3
  11. H. J. Yim, S. J. Park, J. H. Kim and H. G. Kwak, "Nonlinear ultrasonic method to evaluate residual mechanical properties of thermally damaged concrete," ACI Materials Journal, Vol. 111, No. 1-6 (2014)
  12. S. J. Park, H. J. Yim and H. G. Kwak, "Nonlinear resonance vibration method to estimate the damage level on heat-exposed concrete," Fire Safety Journal, Vol. 69, pp. 36-42 (2014) https://doi.org/10.1016/j.firesaf.2014.07.003
  13. K. Y. Jhang, "Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review," International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 1, pp. 123-135 (2009) https://doi.org/10.1007/s12541-009-0019-y
  14. K. A. Van Den Abeele, P. A Johnson and A. Sutin, "Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS)," Research in Nondestructive Evaluation, Vol. 12, No. 1, pp. 17-30 (2000) https://doi.org/10.1080/09349840009409646
  15. K. A. Van Den Abeele, J. Carmeliet, J. A. Ten Cate and P. A. Johnson, "Nonlinear elastic wave spectroscopy(NEWS) techniques to discern material damage, part II: singlemode nonlinear resonance acoustic spectroscopy," Journal of Research in Nondestructive Evaluation, Vol. 12, No. 1, pp. 31-42 (2000) https://doi.org/10.1080/09349840009409647
  16. K. J. Lesnicki, J. Y. Kim, K. E. Kurtis and L. J. Jacobs, "Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique," NDT & E International, Vol. 44, No. 8, pp. 721-727 (2011) https://doi.org/10.1016/j.ndteint.2011.07.010
  17. J. Chen, A. R. Jayapalan, J. Y. Kim, K. E. Kurtis and L. J. Jacobs, "Rapid evaluation of alkali-silica reactivity of aggregates using a nonlinear resonance spectroscopy technique," Cement and Concrete Research, Vol. 40, No. 6, pp. 914-923 (2010) https://doi.org/10.1016/j.cemconres.2010.01.003
  18. M. L. Leming, J. M. Nau and J. Fukuda, "Non-destructive determination of the dynamic modulus of concrete disks," ACI Materials Journal, Vol. 95, No. 1, pp. 50-57 (1998)
  19. ASTM C496/C96M-11, "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens," American Society of Testing and Material (2012)