DOI QR코드

DOI QR Code

Thermal Imaging for Detection of SM45C Subsurface Defects Using Active Infrared Thermography Techniques

능동 적외선 열화상 기법에 의한 SM45C 이면결함 검출 열영상에 관한 연구

  • 정윤재 (공주대학교 대학원 기계공학과) ;
  • ;
  • 김원태 (공주대학교 공과대학 기계자동차공학부)
  • Received : 2015.05.12
  • Accepted : 2015.06.17
  • Published : 2015.06.30

Abstract

Active thermography techniques have the capability of inspecting a broad range simultaneously. By evaluating the phase difference between the defected area and the healthy area, the technique indicates the qualitative location and size of the defect. Previously, the development of the defect detection method used a variety of materials and the test specimen was done. In this study, the proposed technique of lock-in is verified with artificial specimens that have different size and depth of subsurface defects. Finally, the defect detection capability was evaluated using comparisons of the phase image and the amplitude image according to the size and depth of defects.

능동적 열화상 기법은 넓은 면적을 동시에 검사할 수 있으며, 결함부와 건전부 사이의 위상차로부터 결함의 유무를 판단할 수 있다. 지금까지 다양한 재료와 시험편을 가지고 결함 검출 기법에 대한 발전이 이루어졌다. 본 논문에서는 위상잠금 열화상 기법을 적용하여 각각 다른 결함의 크기와 깊이의 인공결함을 갖는 SM45C 시험편을 가지고 제안된 기법을 검증하였으며, 결론으로서 결함의 크기, 깊이에 따른 위상 이미지와 진폭 이미지 검사 결과를 비교하여 결함 검출능을 평가할 수 있었다.

Keywords

References

  1. M. Y. Choi and K. S. Kang, "Defect sizing and location by lock-in photo-infrared thermography," Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 4, pp. 321-327 (2007)
  2. M. Y. Choi and W. T. Kim, "The utilization of nondestructive testing and defects diagnosis using infrared thermography," Journal of the Korean Society for Nondestructive Testing, Vol . 24, No. 5, pp. 525-531 (2004)
  3. G. R. Stockton and W. M. Road, "Infrared application everywhere," Inframation 2002 Proceeding, pp. 149-154 (2002)
  4. ASNT, "Infrared and Thermal Testing," pp. 125-178 (2001)
  5. G. Gaussorgurs, "Infrared Thermography," Translated by Edited S. Chomet, Champman & Hall, London, pp. 414-452 (1994)
  6. X. P. V. Maldague, "Trends in Optical Nondestructive Testing and Inspection," Rastogi P. K, Inaudi D, Editors, pp. 591-633, Elsevier Science, Witzerland, (2000)
  7. G. Busse, D. Wu and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," J. Appl. Phys., Vol 71, No. 8 pp. 1962-1965 (1992)
  8. D. Wu and G. Busse, "Lock-in thermography for nondestructive evaluation of materials," Rev. Gen. Therm., Vol. 37, pp. 693-703 (1998) https://doi.org/10.1016/S0035-3159(98)80047-0
  9. D. P. Almond, and S. K. Lau, "Defect sizing by transient thermography. I: an analytical treatment," J. Phys. D; appl. Phys., Vol. 27, pp. 1063-1069 (1994) https://doi.org/10.1088/0022-3727/27/5/027
  10. M. B. Saintey and D. P. Almond, "An artificial neural network interpreter for transient thermography image data," NDT & E International, Vol. 30, No. 5, pp. 291-295 (1997) https://doi.org/10.1016/S0963-8695(96)00071-0
  11. V. P. Vavilov, "Infrared and thermal testing: heat transfer," Nondestructive Testing Handbook Series III (3rd Ed), X. P. V. Maldague, P. O. Moore Ed. pp. 54-86, ASNT, Columbus, USA, (2001)
  12. G. Busse, "Infrared and thermal testing: technique of infrared thermography," Nondestructive Testing Handbook Series III (3rd Ed), X. P. V. Maldague, P. O. Moore Ed. pp. 318-328, ASNT, Columbus, USA, (2001)
  13. G. Busse and A. Rosencwaig, "Subsurface imaging with photoacoustics," Appl. Phys. Lett., Vol 36, No. 10, pp. 815-816 (1980) https://doi.org/10.1063/1.91327
  14. K. S. Kang, M. Y. Choi, J. H. Park, W. T. Kim, K. S. Kim and S. M, Yang, "Determining size and location of subsurface defects of steel plate by lock-in thermography," 12th Asia-Pacific Conference on Non-Destructive Test, pp. 49 (2006)
  15. S. Ranjit and W. Kim, "Detection of subsurface defects in metal materials using infrared thermography; image processing and finite element modeling," Journal of the Korean Society for Nondestructive Testing, Vol. 34, No. 2, pp. 128-134 (2014) https://doi.org/10.7779/JKSNT.2014.34.2.128
  16. S. Ranjit, W. Kim and J. Park, "Numerical simulation for quantitative characterization of defects in metal by using infrared thermography," IJAER, Vol. 9, No. 24, pp. 29939-29948 (2014)

Cited by

  1. Measurement Uncertainty on Subsurface Defects Detection Using Active Infrared Thermographic Technique vol.35, pp.5, 2015, https://doi.org/10.7779/JKSNT.2015.35.5.341
  2. A Method to Simulate Frictional Heating at Defects in Ultrasonic Infrared Thermography vol.35, pp.6, 2015, https://doi.org/10.7779/JKSNT.2015.35.6.407