초록
During a design process of a protective equipment for sports activities, minimizing movement restrictions is important for enhancing its functions particularly for protection. This study presents a three-dimensional(3D) modeling methodology for designing baseball catcher's leg guards that will allow maximum possible performance, while providing necessary protection. 3D scanning is performed on three positions frequently used by a catcher during the course of a game by putting markings on the subject's legs at 3cm intervals : a standing, a half squat with knees bent to 90 degrees and 120 degrees of knee flexion. Using data obtained from the 3D scan, we analyzed the changes in skin length, radii of curvatures, and cross-sectional shapes, depending on the degree of knee flexion. The results of the analysis were used to decide an on the ideal segmentation of the leg guards by modeling posture. Knee flexions to 90 degrees and to $120^{\circ}$ induced lengthwise extensions than a standing. In particular, the vertical length from the center of the leg increases to a substantially higher degree when compared to those increased from the inner and the outer side of the leg. The degree of extension is varied by positions. Therefore, the leg guards are segmented at points where the rate of increase changed. It resulted in a three-part segmentation of the leg guards at the thigh, the knee, and the shin. Since the 120 degree knee-flexion posture can accommodate other positions as well, the related 3D data are used for modeling Leg Guard (A) with the loft method. At the same time, Leg Guard (B) was modeled with two-part segmentation without separating the knee and the shin as in existing products. A biomechanical analysis of the new design is performed by simulating a 3D dynamic analysis. The analysis revealed that the three-part type (A) leg guards required less energy from the human body than the two-part type (B).