DOI QR코드

DOI QR Code

직접 방사법으로 합성된 탄소나노튜브 섬유의 기계적 특성 향상

Enhancement of the Mechanical Properties of CNT Fibers Synthesized by Direct Spinning Method with Various Post-Treatments

  • 투고 : 2015.08.17
  • 심사 : 2015.08.28
  • 발행 : 2015.08.31

초록

최근 탄소나노튜브 (CNT) 고유의 특성을 충분히 발현하면서, 섬유화를 통해 장점을 극대화 할 수 있는 탄소나노튜브 섬유 합성 방법 및 후처리 공정들이 많은 관심을 받아왔다. 그러나 개별 탄소나노튜브가 다발형태로 집속되어지는 과정 중, 탄소나노튜브 상호간 약한 계면결합력과 전단특성으로 인하여 원하는 섬유 물성을 확보하기 어려운 문제점을 갖고 있다. 이를 해결하기 위해서 본 연구에서는 Direct Spinning 방법을 통한 탄소나노튜브의 연속적인 합성과 다양한 후처리 방법을 이용하여 탄소나노튜브 섬유의 기계적 특성을 조사하였다. 플라즈마 후처리를 통하여 측정된 탄소나노튜브 섬유의 기계적 물성은 본래의 섬유보다 최대 40%가 증가됨을 확인하였다.

Recent studies regarding the properties of carbon nanotubes (CNT) have made remarkable progress in CNT fibers research. However no CNT fibers showed the properties of CNTs because CNTs in fibers have weak interfacial bonding with low shear modulus in the pristine form. Thus, it is upmost interest to develop and employ post-production treatments to the CNT fibers that would potentially improve their properties. In this study, post-treatments resulted in improvement of strength of CNT fibers up to 40%.

키워드

참고문헌

  1. Lu, W., Zu, M., Byun, J.H., Kim, B.S., and Chou, T.W. "State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges", Advanced Materials, Vol. 24, No. 14, 2012, pp. 1805-1833. https://doi.org/10.1002/adma.201104672
  2. Li, Y.L., Kinloch, I.A., and Windle, A.H. "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis", Science, Vol. 304, No. 5668, 2004, pp. 276-278. https://doi.org/10.1126/science.1094982
  3. Filleter, T. and Espinosa, H.D. "Multi-scale Mechanical Improvement Produced in Carbon Nanotube Fibers by Irradiation Cross-linking", Carbon, Vol. 56, 2013, pp. 1-11. https://doi.org/10.1016/j.carbon.2012.12.016
  4. Vilatela, J.J., and Windle, A.H., "A Multifunctional Yarn Made of Carbon Nanotubes", Journal of Engineered Fibers and Fabrics, Vol. 7, 2012, pp. 23-28.
  5. Sears, K., Skourtis, C., Atkinson, K., Finn, N., and Humphries, W., "Focused Ion Beam Milling of Carbon Nanotube Yarns to Study the Relationship between Structure and Strength", Carbon, Vol. 48, No.15, 2010, pp. 4450-4456. https://doi.org/10.1016/j.carbon.2010.08.004
  6. Liu, K., Sun, Y., Zhou, R., Zhu, H., Wang, J., Liu, L., and Jiang, K., "Carbon Nanotube Yarns with High Tensile Strength Made by a Twisting and Shrinking Method", Nanotechnology, Vol. 21, No. 4, 2010, pp. 045708. https://doi.org/10.1088/0957-4484/21/4/045708
  7. Babu, D.J., Yadav, S., Heinlein, T., Cherkashinin, G., and Schneider, J.J., "Carbon Dioxide Plasma as a Versatile Medium for Purification and Functionalization of Vertically Aligned Carbon Nanotubes", The Journal of Physical Chemistry C, Vol. 118, No. 22, 2014, pp. 12028-12034. https://doi.org/10.1021/jp5027515
  8. Wei, H., Wei, Y., Wu, Y., Liu, L., Fan, S., and Jiang, K., "Highstrength Composite Yarns Derived from Oxygen Plasma Modified Super-aligned Carbon Nanotube Arrays", Nano Research, Vol. 6, No. 3, 2013, pp. 208-215. https://doi.org/10.1007/s12274-013-0297-7
  9. Yu, H., Cheng, D., Williams, T.S., Severino, J., De Rosa, I.M., Carlson, L., and Hicks, R.F., "Rapid Oxidative Activation of Carbon Nanotube Yarn and Sheet by a Radio Frequency, Atmospheric Pressure, Helium and Oxygen Plasma", Carbon, Vol. 57, 2013, pp. 11-21. https://doi.org/10.1016/j.carbon.2013.01.010
  10. Xu, T., Yang, J., Liu, J., and Fu, Q., "Surface Modification of Multi-walled Carbon Nanotubes by $O_2$ Plasma", Applied Surface Science, Vol. 253, No. 22, 2007, pp. 8945-8951. https://doi.org/10.1016/j.apsusc.2007.05.028
  11. Gspann, T.S., Smail, F.R., and Windle, A.H., "Spinning of Carbon Nanotube Fibres Using the Floating Catalyst High Temperature Route: Purity Issues and the Critical Role of Sulphur", Faraday Discuss., Vol. 173, 2014, pp. 47-65. https://doi.org/10.1039/C4FD00066H
  12. Zhong, X.H., Li, Y.L., Liu, Feng, Y., Liang, J., and Li, J.Y. "Continuous Multilayered Carbon Nanotube Yarns", Advanced Materials, Vol. 22, No. 6 2010, pp. 692-696. https://doi.org/10.1002/adma.200902943