DOI QR코드

DOI QR Code

Humanoid Robot Footstep Planner with Fuzzy-Based Multi-Criteria Decision Making

퍼지 기반 다기준 의사 결정을 이용한 휴머노이드 로봇 걸음새 계획기

  • Lee, Ki-Baek (Dept. Electrical Engineering,, Kwangwoon University)
  • Received : 2015.05.11
  • Accepted : 2015.07.16
  • Published : 2015.08.15

Abstract

This paper proposes a novel fuzzy-based multi-criteria decision making method and implements a footstep planner for humanoid robots with it. Humanoid robots require additional footstep planning process in addition to path planning for the autonomous navigation. Moreover, it is necessary to consider safety and energy consumption as well as path efficiency and multi-criteria decision making is indispensable. The proposed method can provide not only well- distributed and non-dominated, but also more preferable solutions for users. The planned footsteps by the proposed method were verified through simulation. The results indicate that the user's preference is properly reflected in optimized solutions maintaining solution quality.

Keywords

References

  1. Wai, R.-J., Liu, C.-M., 2009, Design of Dynamic Petri Recurrent Fuzzy Neural Network and Its Application to Path-tracking Control of Nonholonomic Mobile Robot, IEEE Trans. on Ind. Elec., 56:7 2667-2683. https://doi.org/10.1109/TIE.2009.2020077
  2. Garcia, M., Montiel, O., Castillo, O., Sep'ulveda, R., Melin, P., 2009, Path Planning for Autonomous Mobile Robot Navigation with Ant Colony Optimization and Fuzzy Cost Function Evaluation, Applied Soft Computing, 9:3 1102-1110. https://doi.org/10.1016/j.asoc.2009.02.014
  3. Sasaki, T., Brscic, D., Hashimoto, H., 2010, Human-observation-based Extraction of Path Patterns for Mobile Robot Navigation, IEEE Trans. on Ind. Elec., 57:4 1401-1410. https://doi.org/10.1109/TIE.2009.2030825
  4. Dudek, G., Jenkin, M., 2010, Computational Principles Of Mobile Robotics, Cambridge University Press, England.
  5. Wong, T. E., Jarvis, R., 2004, Real Time Obstacle Detection and Navigation Planning for a Humanoid Robot in an Indoor Environment, in Proc. IEEE Conference on Robotics, 693-698.
  6. Chestnutt, J., Kuffner, J., Nishiwaki, K., Kagami, S., 2003, Planning Biped Navigation Strategies in Complex Environments, in Proc. IEEE Int. Conf. Humanoid Robotics.
  7. Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., Kanade, T., 2005, Human-observation-based Extraction of Path Patterns for Mobile Robot Navigation, in Proc. IEEE Int. Conf. Robotics and Automation, 629-635.
  8. Chestnutt, J., Michel, P., Nishiwaki, K., Kuffner, J., Kagami, S., 2006, Human-observation-based Extraction of Path Patterns for Mobile Robot Navigation, in Proc. IEEE Int. Conf. Robotics and Automation, 860-865.
  9. Xia, Z., Xiong, J., Chen, K., 2010, Parameter Self-adaptation in Biped Navigation Employing Nonuniform Randomized Footstep Planner, Robotica, 28:6 929-936. https://doi.org/10.1017/S0263574709990804
  10. Xia, Z., Xiong, J., Chen, K., 2011, Global Navigation for Humanoid Robots using Sampling-based Footstep Planners, IEEE Trans. Mech., 16:4 716-723. https://doi.org/10.1109/TMECH.2010.2051679
  11. Perrin, N., Stasse, O., Baudouin, L., Lamiraux, F., Yoshida, E., 2012, Fast Humanoid Robot Collision-free Footstep Planning using Swept Volume Approximations, IEEE Trans. Robotics, 28:2 427-439. https://doi.org/10.1109/TRO.2011.2172152
  12. Kim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., Kim, E.-S., 2012, Preference-based Solution Selection Algorithm for Evolutionary Multiobjective Optimization, IEEE Trans. Evol. Comput., 16:1 20-34. https://doi.org/10.1109/TEVC.2010.2098412
  13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E., 2002, Scalable Multiobjective Optimization Test Problems, in Proc. IEEE Congr. Evol. Comput., 825-830.
  14. Saaty, T. L., 2008, Decision Making with the Analytic Hierarchy Process, Int. J. Services Sci., 1:1 83-98. https://doi.org/10.1504/IJSSCI.2008.017590
  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6:2 182-197. https://doi.org/10.1109/4235.996017
  16. Coello, C., Lechuga, M., 2002, MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization, in Proc. IEEE Congr. Evol. Comput., 1051-1056.
  17. Zitzler, E., 1999, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, A Thesis for a Doctorate, Swiss Federal Instit. Technol., Swiss.
  18. Li, H., Zhang, Q., Tsang, E., Ford, J., 2004, Hybrid eStimation of Distribution Algorithm for Multiobjective Knapsack Problem, Lecture Notes in Computer Science, 3004:2 145-154.
  19. Lee, B.-J., Stonier, D. J., Kim, Y.-D., Yoo, J.-K., Kim, J.-H. 2008, Modifiable Walking Pattern of a Humanoid Robot by using Allowable ZMP Variation, IEEE Trans. Robot., 24:4 917-925. https://doi.org/10.1109/TRO.2008.926859