References
- Geim, A. K., Novoselov, K. S., 2007, The Rise of Graphene, Nature Mater, 6:3 183-191. https://doi.org/10.1038/nmat1849
- Ranjbartoreh, A. R., Wang, B., Shen, X., Wang, G., 2011, Advanced Mechanical Properties of Graphene Paper, Journal of Applied Physics, 109:1 014306-014311. https://doi.org/10.1063/1.3528213
- Golkarian, A. R., Jabbarzadeh, M., 2013, The Density Effect of van der Waals Forces on the Elastic Modules in Graphite Layers, Computational Materials Science, 74 138-142. https://doi.org/10.1016/j.commatsci.2013.03.026
- Sakhaee-Pour, A., 2009, Elastic Properties of Single-layered Graphene Sheet, Solid State Communication, 149:1/2 91-95. https://doi.org/10.1016/j.ssc.2008.09.050
- WenXing, B., ChangChun, Z., WanZhao, C., 2004, Simulation of Young's Modulus of Single-walled Carbon Nanotubes by Molecular Dynamics, Physica B, 352:1/4 156-163. https://doi.org/10.1016/j.physb.2004.07.005
- Blakslee, O. L., Proctor, D. G., 1970, Elastic Constants of Compression Annealed Pyrolytic Graphite, J. Appl. Phys., 41:8 3373-3382. https://doi.org/10.1063/1.1659428
- Scarpa, F., Adhikari, S., Gil, A. J., Remillat, C., 2009, The Bending of Single Layer Graphene Sheets: the Lattice versus Continuum Approach, Nanotechnology, 21:12 1-9.
- Hod, O., Scuseria, G. E., 2009, Electromechanical Properties of Suspended Graphene Nanoribbons, Nano Letters, 9:7 2619-2622. https://doi.org/10.1021/nl900913c
- Lee, C., Wei, X., Kysar, J. W., Hone, J., 2008, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321:5887 385-388. https://doi.org/10.1126/science.1157996
- Kim, D. Y., Han, S. Y., 2015, Effect of Interlayer Forces for Multilayered Graphene Sheets with Different Gap Thicknesses in using Nanoscale Molecular Mechanics Approach, Journal of Mechanical Science and Technology, 29:5 1-10.
- Van Lier, G., Van Alsenoy, C., Van Doren, V., Geerlings, P., 2000, Ab initio Study of the Elastic Properties of Single-walled Carbon Nanotubes and Graphene, Chem. Phys Letter, 326:1/2 181-185. https://doi.org/10.1016/S0009-2614(00)00764-8
- Reddy, C. D., Rajendran, S., Liew, K. M., 2005, Equivalent Continuum Modeling of Graphene Sheets, Int J. Nanosci, 4:4 631-636. https://doi.org/10.1142/S0219581X05003528
- Lu, X., Hu, Z., 2012, Mechanical Property Evaluation of Single-walled Carbon Nanotubes by Finite Element Modeling, Composites Engineering, 43:4 1902-1913. https://doi.org/10.1016/j.compositesb.2012.02.002
- Wang, W., Shen, C., Li, S., 2014, Mechanical Properties of Single Layer Graphene Nanoribbons through Bending Experimental Simulations, AIP Advances, 4 1-8.
- Shokrieh, M. M., Rafiee, R., 2010, Prediction of Young′s Modulus of Graphene Sheets and Carbon Nanotubes using Nanoscale Continuum Mechanics Approach, Material and Design, 31:2 790-795. https://doi.org/10.1016/j.matdes.2009.07.058
- Zhao, H., Min, K., Aluru, N. R., 2009, Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension, Nano Letters, 9:8 3012-3015. https://doi.org/10.1021/nl901448z
- Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., McEuen, P. L., 2007, Mechanical Properties of Suspended Graphene Sheets, Journal of Vacuum Science & Technology B, 25:6 2558-2561. https://doi.org/10.1116/1.2789446
- Zhang, Y. Y., Wang, C. M., Cheng, Y., Xiang, Y., 2011, Mechanical Properties of Bilayer Graphene Sheets Coupled by sp3 Bonding, Carbon, 49:13 4511-4517. https://doi.org/10.1016/j.carbon.2011.06.058