References
- Alonso, A., Rodriguez, L.A.G., Logroscino, G., and Hernan, M.A. (2009). Use of antidepressants and the risk of Parkinson's disease:a prospective study. J. Neurol. Neurosurg. Psychiatry 80, 671-674. https://doi.org/10.1136/jnnp.2008.152983
- Arif, I.A., and Khan, H.A. (2010). Environmental toxins and Parkinson's disease: Putative roles of impaired electron transport chain and oxidative stress. Toxicol. Ind. Health 26, 121-128. https://doi.org/10.1177/0748233710362382
- Bautista-Ferrufino, M.R., Cordero, M.D., Sanchez-Alcazar, J.A., Illanes, M., Fernandez-Rodriguez, A., Navas, P., and de Miguel, M. (2011). Amitriptyline induces coenzyme Q deficiency and oxidative damage in mouse lung and liver. Toxicol. Lett. 204, 32-37. https://doi.org/10.1016/j.toxlet.2011.03.033
- Benito-Leon, J., Louis, E.D., Bermejo-Pareja, F., and Cent, N.D.I. (2009). Risk of incident Parkinson's disease and parkinsonism in essential tremor: a population based study. J. Neurol. Neurosurg. Psychiatry 80, 423-425.
- Bishnoi, M., Chopra, K., and Kulkarni, S.K. (2007a). Theophylline, adenosine receptor antagonist prevents behavioral, biochemical and neurochemical changes associated with an animal model of tardive dyskinesia. Pharmacol. Rep. 59, 181-191.
- Bishnoi, M., Chopra, K., and Kulkarni, S.K. (2007b). Neurochemical changes associated with chronic administration of typical antipsychotics and its relationship with tardive dyskinesia. Methods Find. Exp. Clin. Pharmacol. 29, 211-216. https://doi.org/10.1358/mf.2007.29.3.1075355
- Chan, H.N., Fam, J., and Ng, B.Y. (2009). Use of antidepressants in the treatment of chronic pain. Ann. Acad. Med. Singapore 38, 974-979.
- Crome, P. (1986). Poisoning due to tricyclic antidepressant overdosage. Clinical presentation and treatment. Med. Toxicol. 1, 261-285. https://doi.org/10.1007/BF03259843
- Dick, F.D., De Palma, G., Ahmadi, A., Scott, N.W., Prescott, G.J., Bennett, J., Semple, S., Dick, S., Counsell, C., Mozzoni, P., et al. (2007). Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study. Occup. Environ. Med. 64, 666-672. https://doi.org/10.1136/oem.2006.027003
- Estebe, J.P., and Myers, R.R. (2004). Amitriptyline neurotoxicity-Dose-related pathology after topical application to rat sciatic nerve. Anesthesiol. 100, 1519-1525. https://doi.org/10.1097/00000542-200406000-00026
- Foltynie, T., Sawcer, S., Brayne, C., and Barker, R.A. (2002). The genetic basis of Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 73, 363-370. https://doi.org/10.1136/jnnp.73.4.363
- Freire, C., and Koifman, S. (2012). Pesticide exposure and Parkinson's disease: Epidemiological evidence of association. Neurotoxicol. 33, 947-971. https://doi.org/10.1016/j.neuro.2012.05.011
- Ghibelli, L., and Diederich, M. (2010). Multistep and multitask Bax activation. Mitochondrion 10, 604-613. https://doi.org/10.1016/j.mito.2010.08.003
- Haller, I., Lirk, P., Keller, C., Wang, G.K., Gerner, P., and Klimaschewski, L. (2007) .Differential neurotoxicity of tricyclic antidepressants and novel derivatives in vitro in a dorsal root ganglion cell culture model. Eur. J. Anaesthesiol. 24, 702-708. https://doi.org/10.1017/S0265021507000154
- Han, S.I., Kim, Y.S., and Kim, T.H. (2008). Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. https://doi.org/10.5483/BMBRep.2008.41.1.001
- Hatcher, J.M., Pennell, K.D., and Miller, G.W. (2008). Parkinson's disease and pesticides: a toxicological perspective. Trends Pharmacol. Sci. 29, 322-329. https://doi.org/10.1016/j.tips.2008.03.007
- Higgins, S.C., and Pilkington, G.J. (2010). The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res. 30, 391-397.
- Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R., and Zalutsky, R. (2007). How common are the "common" neurologic disorders? Neurology 68, 326-337. https://doi.org/10.1212/01.wnl.0000252807.38124.a3
- Hroudova, J., and Fisar, Z. (2010). Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuroendocrinol. Lett. 31, 336-342.
- Hroudova, J., and Fisar, Z. (2012). In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 213, 345-352. https://doi.org/10.1016/j.toxlet.2012.07.017
- Huang, Y.Y., Peng, C.H., Yang, Y.P., Wu, C.C., Hsu, W.M., Wang, H.J., Chan, K.H., Chou, Y.P., Chen, S.J., and Chang, Y.L. (2007). Desipramine activated Bcl-2 expression and inhibited lipopolysaccharide-induced apoptosis in hippocampus-derived adult neural stem cells. J. Pharmacol. Sci. 104, 61-72. https://doi.org/10.1254/jphs.FP0061255
- Karbowski, M., Norris, K.L., Cleland, M.M., Jeong, S.Y., and Youle, R.J. (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658-662. https://doi.org/10.1038/nature05111
- Kim, H.L., Ra, H., Kim, K.R., Lee, J.M., Im, H., and Kim, Y.H. (2015). Poly(ADP-ribosyl)ation of p53 contributes to TPEN-induced neuronal apoptosis. Mol. Cells 38, 312-317. https://doi.org/10.14348/molcells.2015.2142
- Kitagawa, N., Oda, M., Nobutaka, I., Satoh, H., Totoki, T., and Morimoto, M. (2006). A proposed mechanism for amitriptyline neurotoxicity based on its detergent nature. Toxicol. Appl. Pharmacol. 217, 100-106. https://doi.org/10.1016/j.taap.2006.08.003
- Lemasters, J.J. (1999). Mechanisms of hepatic toxicity - V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol.- Gastrointestin. Liver Physiol. 276, G1-G6. https://doi.org/10.1152/ajpgi.1999.276.1.G1
- Lirk, P., Haller, I., Hausott, B., Ingorokva, S., Deibl, M., Gerner, P., and Klimaschewski, L. (2006). The neurotoxic effects of amitriptyline are mediated by apoptosis and are effectively blocked by inhibition of caspase activity. Anesth. Analg. 102, 1728-1733. https://doi.org/10.1213/01.ane.0000216018.62549.bb
- Lohr, J.B., Kuczenski, R., and Niculescu, A.B. (2003). Oxidative mechanisms and tardive dyskinesia. CNS Drugs 17, 47-62. https://doi.org/10.2165/00023210-200317010-00004
- Mammucari, C., and Rizzuto, R. (2010). Signaling pathways in mitochondrial dysfunction and aging. Mech. Ageing Dev. 131, 536-543. https://doi.org/10.1016/j.mad.2010.07.003
- Matsuura, K., Kabuto, H., Makino, H., and Ogawa, N. (1997). Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J. Neurosci. Methods 73, 45-48. https://doi.org/10.1016/S0165-0270(96)02211-X
- Mena, M.A., and de Yebenest, J.G. (2006). Drug-induced parkinsonism. Exp. Opin. Drug Safety 5, 759-771. https://doi.org/10.1517/14740338.5.6.759
- Mena, M.A., Deyebenes, M.J.G., Tabernero, C., Casarejos, M.J., Pardo, B., and Deyebenes, J.G. (1995). Effects of calciumantagonists on the dopamine system. Clin. Neuropharmacol. 18, 410-426. https://doi.org/10.1097/00002826-199510000-00004
- Meredith, G.E., and Kang, U.J. (2006). Behavioral models of Parkinson's disease in rodents: A new look at an old problem. Mov. Disord. 21, 1595-1606. https://doi.org/10.1002/mds.21010
- Meredith, G.E., Sonsalla, P.K., and Chesselet, M.F. (2008). Animal models of Parkinson's disease progression. Acta Neuropathologica 115, 385-398. https://doi.org/10.1007/s00401-008-0350-x
- Mukhopadhyay, S., Panda, P.K., Sinha, N., Das, D.N., and Bhutia, S.K. (2014). Autophagy and apoptosis: where do they meet? Apoptosis 19, 555-566. https://doi.org/10.1007/s10495-014-0967-2
- Ogawa, N., Hirose, Y., Ohara, S., Ono, T., and Watanabe, Y. (1985). A simple quantitative bradykinesia test in Mptp-treated mice. Res. Commun. Chem. Pathol. Pharmacol. 50, 435-441.
- Peng, T.I., and Jou, M.J. (2010). Oxidative stress caused by mitochondrial calcium overload. Ann. N Y Acad. Sci. 1201, 183-188. https://doi.org/10.1111/j.1749-6632.2010.05634.x
- Priyadarshi, A., Khuder, S.A., Schaub, E.A., and Priyadarshi, S.S. (2001). Environmental risk factors and Parkinson's disease: a metaanalysis. Environ. Res. 86, 122-127. https://doi.org/10.1006/enrs.2001.4264
- Rauch, F., Schwabe, K., and Krauss, J.K. (2010). Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav. Brain Res. 210, 46-53. https://doi.org/10.1016/j.bbr.2010.02.003
- Rollema, H., Skolnik, M., Dengelbronner, J., Igarashi, K., Usuki, E., and Castagnoli, N. (1994). Mpp(+)-like neurotoxicity of a pyridinium metabolite derived from Haloperidol - in-vivo microdialysis and in-vitro mitochondrial studies. J. Pharmacol. Exp. Ther. 268, 380-387.
- Sheridan, C., Delivani, P., Cullen, S.P., and Martin, S.J. (2008). Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome c release. Mol. Cell 31, 570-585. https://doi.org/10.1016/j.molcel.2008.08.002
- Shin, H.W., and Chung, S.J. (2012). Drug-induced Parkinsonism. J. Clin. Neurol. 8, 15-21. https://doi.org/10.3988/jcn.2012.8.1.15
- Tsai, M.J., and Lee, E.H.Y. (1998). Nitric oxide donors protect cultured rat astrocytes from 1-methyl-4-phenylpyridinium-induced toxicity. Free Rad. Biol. Med. 24, 705-713. https://doi.org/10.1016/S0891-5849(97)00329-8
- Van Houten, B., Woshner, V., and Santos, J.H. (2006). Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 5, 145-152. https://doi.org/10.1016/j.dnarep.2005.03.002
- Warner, C.H., Bobo, W., Warner, C., Reid, S., and Rachal, J. (2006). Antidepressant discontinuation syndrome. Am. Fam. Phys. 74, 449-456. https://doi.org/10.1119/1.2174053
- Wu, Y.T., Tan, H.L., Shui, G., Bauvy, C., Huang, Q., Wenk, M.R., Ong, C.N., Codogno, P., and Shen, H.M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861. https://doi.org/10.1074/jbc.M109.080796
- Zschocke, J., Zimmermann, N., Berning, B., Ganal, V., Holsboer, F., and Rein, T. (2011). Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons--dissociation from cholesterol homeostasis. Neuropsychopharmacol. 36, 1754-1768. https://doi.org/10.1038/npp.2011.57
Cited by
- Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences vol.31, 2016, https://doi.org/10.1016/j.mito.2016.10.005
- Psychotropic Drug Development Strategies that Target Neuropsychiatric Etiologies in Alzheimer's and Parkinson's Diseases vol.77, pp.8, 2016, https://doi.org/10.1002/ddr.21368
- Amitriptyline induced tardive dyskinesia in a patient with cirrhotic Parkinsonism vol.8, pp.2, 2017, https://doi.org/10.1016/j.injms.2017.03.003
- Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells vol.62, 2017, https://doi.org/10.1016/j.ntt.2017.05.002
- Desipramine induces apoptosis in hepatocellular carcinoma cells vol.38, pp.2, 2017, https://doi.org/10.3892/or.2017.5723
- Development of a sensitive and quantitative capillary LC-UV method to study the uptake of pharmaceuticals in zebrafish brain vol.410, pp.11, 2018, https://doi.org/10.1007/s00216-018-0955-4
- Xeroderma pigmentosum: overview of pharmacology and novel therapeutic strategies for neurological symptoms pp.00071188, 2019, https://doi.org/10.1111/bph.14557
- Klotho-Mediated Changes in Shelterin Complex Promote Cytotoxic Autophagy and Apoptosis in Amitriptyline-Treated Hippocampal Neuronal Cells vol.56, pp.10, 2015, https://doi.org/10.1007/s12035-019-1575-5
- Autophagy Modulators and Neuroinflammation vol.27, pp.6, 2015, https://doi.org/10.2174/0929867325666181031144605
- Repeated administration of fluvoxamine worsens gentamicin-induced nephrotoxicity in rats vol.9, pp.2, 2020, https://doi.org/10.4103/jrptps.jrptps_57_19
- Amitriptyline interferes with autophagy-mediated clearance of protein aggregates via inhibiting autophagosome maturation in neuronal cells vol.11, pp.10, 2015, https://doi.org/10.1038/s41419-020-03085-6