DOI QR코드

DOI QR Code

Tricyclic Antidepressants Amitriptyline and Desipramine Induced Neurotoxicity Associated with Parkinson's Disease

  • Lee, Min-yeong (Department of Molecular Biology, Sejong University) ;
  • Hong, Seokheon (Department of Molecular Biology, Sejong University) ;
  • Kim, Nahmhee (Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Shin, Ki Soon (Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Kang, Shin Jung (Department of Molecular Biology, Sejong University)
  • Received : 2015.05.12
  • Accepted : 2015.06.22
  • Published : 2015.08.31

Abstract

Recent studies report that a history of antidepressant use is strongly correlated with the occurrence of Parkinson' disease (PD). However, it remains unclear whether antidepressant use can be a causative factor for PD. In the present study, we examined whether tricyclic antidepressants amitriptyline and desipramine can induce dopaminergic cell damage, both in vitro and in vivo. We found that amitriptyline and desipramine induced mitochondria-mediated neurotoxicity and oxidative stress in SH-SY5Y cells. When injected into mice on a subchronic schedule, amitriptyline induced movement deficits in the pole test, which is known to detect nigrostriatal dysfunction. In addition, the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta was reduced in amitriptyline-injected mice. Our results suggest that amitriptyline and desipramine may induce PD-associated neurotoxicity.

Keywords

References

  1. Alonso, A., Rodriguez, L.A.G., Logroscino, G., and Hernan, M.A. (2009). Use of antidepressants and the risk of Parkinson's disease:a prospective study. J. Neurol. Neurosurg. Psychiatry 80, 671-674. https://doi.org/10.1136/jnnp.2008.152983
  2. Arif, I.A., and Khan, H.A. (2010). Environmental toxins and Parkinson's disease: Putative roles of impaired electron transport chain and oxidative stress. Toxicol. Ind. Health 26, 121-128. https://doi.org/10.1177/0748233710362382
  3. Bautista-Ferrufino, M.R., Cordero, M.D., Sanchez-Alcazar, J.A., Illanes, M., Fernandez-Rodriguez, A., Navas, P., and de Miguel, M. (2011). Amitriptyline induces coenzyme Q deficiency and oxidative damage in mouse lung and liver. Toxicol. Lett. 204, 32-37. https://doi.org/10.1016/j.toxlet.2011.03.033
  4. Benito-Leon, J., Louis, E.D., Bermejo-Pareja, F., and Cent, N.D.I. (2009). Risk of incident Parkinson's disease and parkinsonism in essential tremor: a population based study. J. Neurol. Neurosurg. Psychiatry 80, 423-425.
  5. Bishnoi, M., Chopra, K., and Kulkarni, S.K. (2007a). Theophylline, adenosine receptor antagonist prevents behavioral, biochemical and neurochemical changes associated with an animal model of tardive dyskinesia. Pharmacol. Rep. 59, 181-191.
  6. Bishnoi, M., Chopra, K., and Kulkarni, S.K. (2007b). Neurochemical changes associated with chronic administration of typical antipsychotics and its relationship with tardive dyskinesia. Methods Find. Exp. Clin. Pharmacol. 29, 211-216. https://doi.org/10.1358/mf.2007.29.3.1075355
  7. Chan, H.N., Fam, J., and Ng, B.Y. (2009). Use of antidepressants in the treatment of chronic pain. Ann. Acad. Med. Singapore 38, 974-979.
  8. Crome, P. (1986). Poisoning due to tricyclic antidepressant overdosage. Clinical presentation and treatment. Med. Toxicol. 1, 261-285. https://doi.org/10.1007/BF03259843
  9. Dick, F.D., De Palma, G., Ahmadi, A., Scott, N.W., Prescott, G.J., Bennett, J., Semple, S., Dick, S., Counsell, C., Mozzoni, P., et al. (2007). Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study. Occup. Environ. Med. 64, 666-672. https://doi.org/10.1136/oem.2006.027003
  10. Estebe, J.P., and Myers, R.R. (2004). Amitriptyline neurotoxicity-Dose-related pathology after topical application to rat sciatic nerve. Anesthesiol. 100, 1519-1525. https://doi.org/10.1097/00000542-200406000-00026
  11. Foltynie, T., Sawcer, S., Brayne, C., and Barker, R.A. (2002). The genetic basis of Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 73, 363-370. https://doi.org/10.1136/jnnp.73.4.363
  12. Freire, C., and Koifman, S. (2012). Pesticide exposure and Parkinson's disease: Epidemiological evidence of association. Neurotoxicol. 33, 947-971. https://doi.org/10.1016/j.neuro.2012.05.011
  13. Ghibelli, L., and Diederich, M. (2010). Multistep and multitask Bax activation. Mitochondrion 10, 604-613. https://doi.org/10.1016/j.mito.2010.08.003
  14. Haller, I., Lirk, P., Keller, C., Wang, G.K., Gerner, P., and Klimaschewski, L. (2007) .Differential neurotoxicity of tricyclic antidepressants and novel derivatives in vitro in a dorsal root ganglion cell culture model. Eur. J. Anaesthesiol. 24, 702-708. https://doi.org/10.1017/S0265021507000154
  15. Han, S.I., Kim, Y.S., and Kim, T.H. (2008). Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. https://doi.org/10.5483/BMBRep.2008.41.1.001
  16. Hatcher, J.M., Pennell, K.D., and Miller, G.W. (2008). Parkinson's disease and pesticides: a toxicological perspective. Trends Pharmacol. Sci. 29, 322-329. https://doi.org/10.1016/j.tips.2008.03.007
  17. Higgins, S.C., and Pilkington, G.J. (2010). The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res. 30, 391-397.
  18. Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R., and Zalutsky, R. (2007). How common are the "common" neurologic disorders? Neurology 68, 326-337. https://doi.org/10.1212/01.wnl.0000252807.38124.a3
  19. Hroudova, J., and Fisar, Z. (2010). Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuroendocrinol. Lett. 31, 336-342.
  20. Hroudova, J., and Fisar, Z. (2012). In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 213, 345-352. https://doi.org/10.1016/j.toxlet.2012.07.017
  21. Huang, Y.Y., Peng, C.H., Yang, Y.P., Wu, C.C., Hsu, W.M., Wang, H.J., Chan, K.H., Chou, Y.P., Chen, S.J., and Chang, Y.L. (2007). Desipramine activated Bcl-2 expression and inhibited lipopolysaccharide-induced apoptosis in hippocampus-derived adult neural stem cells. J. Pharmacol. Sci. 104, 61-72. https://doi.org/10.1254/jphs.FP0061255
  22. Karbowski, M., Norris, K.L., Cleland, M.M., Jeong, S.Y., and Youle, R.J. (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658-662. https://doi.org/10.1038/nature05111
  23. Kim, H.L., Ra, H., Kim, K.R., Lee, J.M., Im, H., and Kim, Y.H. (2015). Poly(ADP-ribosyl)ation of p53 contributes to TPEN-induced neuronal apoptosis. Mol. Cells 38, 312-317. https://doi.org/10.14348/molcells.2015.2142
  24. Kitagawa, N., Oda, M., Nobutaka, I., Satoh, H., Totoki, T., and Morimoto, M. (2006). A proposed mechanism for amitriptyline neurotoxicity based on its detergent nature. Toxicol. Appl. Pharmacol. 217, 100-106. https://doi.org/10.1016/j.taap.2006.08.003
  25. Lemasters, J.J. (1999). Mechanisms of hepatic toxicity - V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol.- Gastrointestin. Liver Physiol. 276, G1-G6. https://doi.org/10.1152/ajpgi.1999.276.1.G1
  26. Lirk, P., Haller, I., Hausott, B., Ingorokva, S., Deibl, M., Gerner, P., and Klimaschewski, L. (2006). The neurotoxic effects of amitriptyline are mediated by apoptosis and are effectively blocked by inhibition of caspase activity. Anesth. Analg. 102, 1728-1733. https://doi.org/10.1213/01.ane.0000216018.62549.bb
  27. Lohr, J.B., Kuczenski, R., and Niculescu, A.B. (2003). Oxidative mechanisms and tardive dyskinesia. CNS Drugs 17, 47-62. https://doi.org/10.2165/00023210-200317010-00004
  28. Mammucari, C., and Rizzuto, R. (2010). Signaling pathways in mitochondrial dysfunction and aging. Mech. Ageing Dev. 131, 536-543. https://doi.org/10.1016/j.mad.2010.07.003
  29. Matsuura, K., Kabuto, H., Makino, H., and Ogawa, N. (1997). Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J. Neurosci. Methods 73, 45-48. https://doi.org/10.1016/S0165-0270(96)02211-X
  30. Mena, M.A., and de Yebenest, J.G. (2006). Drug-induced parkinsonism. Exp. Opin. Drug Safety 5, 759-771. https://doi.org/10.1517/14740338.5.6.759
  31. Mena, M.A., Deyebenes, M.J.G., Tabernero, C., Casarejos, M.J., Pardo, B., and Deyebenes, J.G. (1995). Effects of calciumantagonists on the dopamine system. Clin. Neuropharmacol. 18, 410-426. https://doi.org/10.1097/00002826-199510000-00004
  32. Meredith, G.E., and Kang, U.J. (2006). Behavioral models of Parkinson's disease in rodents: A new look at an old problem. Mov. Disord. 21, 1595-1606. https://doi.org/10.1002/mds.21010
  33. Meredith, G.E., Sonsalla, P.K., and Chesselet, M.F. (2008). Animal models of Parkinson's disease progression. Acta Neuropathologica 115, 385-398. https://doi.org/10.1007/s00401-008-0350-x
  34. Mukhopadhyay, S., Panda, P.K., Sinha, N., Das, D.N., and Bhutia, S.K. (2014). Autophagy and apoptosis: where do they meet? Apoptosis 19, 555-566. https://doi.org/10.1007/s10495-014-0967-2
  35. Ogawa, N., Hirose, Y., Ohara, S., Ono, T., and Watanabe, Y. (1985). A simple quantitative bradykinesia test in Mptp-treated mice. Res. Commun. Chem. Pathol. Pharmacol. 50, 435-441.
  36. Peng, T.I., and Jou, M.J. (2010). Oxidative stress caused by mitochondrial calcium overload. Ann. N Y Acad. Sci. 1201, 183-188. https://doi.org/10.1111/j.1749-6632.2010.05634.x
  37. Priyadarshi, A., Khuder, S.A., Schaub, E.A., and Priyadarshi, S.S. (2001). Environmental risk factors and Parkinson's disease: a metaanalysis. Environ. Res. 86, 122-127. https://doi.org/10.1006/enrs.2001.4264
  38. Rauch, F., Schwabe, K., and Krauss, J.K. (2010). Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav. Brain Res. 210, 46-53. https://doi.org/10.1016/j.bbr.2010.02.003
  39. Rollema, H., Skolnik, M., Dengelbronner, J., Igarashi, K., Usuki, E., and Castagnoli, N. (1994). Mpp(+)-like neurotoxicity of a pyridinium metabolite derived from Haloperidol - in-vivo microdialysis and in-vitro mitochondrial studies. J. Pharmacol. Exp. Ther. 268, 380-387.
  40. Sheridan, C., Delivani, P., Cullen, S.P., and Martin, S.J. (2008). Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome c release. Mol. Cell 31, 570-585. https://doi.org/10.1016/j.molcel.2008.08.002
  41. Shin, H.W., and Chung, S.J. (2012). Drug-induced Parkinsonism. J. Clin. Neurol. 8, 15-21. https://doi.org/10.3988/jcn.2012.8.1.15
  42. Tsai, M.J., and Lee, E.H.Y. (1998). Nitric oxide donors protect cultured rat astrocytes from 1-methyl-4-phenylpyridinium-induced toxicity. Free Rad. Biol. Med. 24, 705-713. https://doi.org/10.1016/S0891-5849(97)00329-8
  43. Van Houten, B., Woshner, V., and Santos, J.H. (2006). Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 5, 145-152. https://doi.org/10.1016/j.dnarep.2005.03.002
  44. Warner, C.H., Bobo, W., Warner, C., Reid, S., and Rachal, J. (2006). Antidepressant discontinuation syndrome. Am. Fam. Phys. 74, 449-456. https://doi.org/10.1119/1.2174053
  45. Wu, Y.T., Tan, H.L., Shui, G., Bauvy, C., Huang, Q., Wenk, M.R., Ong, C.N., Codogno, P., and Shen, H.M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861. https://doi.org/10.1074/jbc.M109.080796
  46. Zschocke, J., Zimmermann, N., Berning, B., Ganal, V., Holsboer, F., and Rein, T. (2011). Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons--dissociation from cholesterol homeostasis. Neuropsychopharmacol. 36, 1754-1768. https://doi.org/10.1038/npp.2011.57

Cited by

  1. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences vol.31, 2016, https://doi.org/10.1016/j.mito.2016.10.005
  2. Psychotropic Drug Development Strategies that Target Neuropsychiatric Etiologies in Alzheimer's and Parkinson's Diseases vol.77, pp.8, 2016, https://doi.org/10.1002/ddr.21368
  3. Amitriptyline induced tardive dyskinesia in a patient with cirrhotic Parkinsonism vol.8, pp.2, 2017, https://doi.org/10.1016/j.injms.2017.03.003
  4. Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells vol.62, 2017, https://doi.org/10.1016/j.ntt.2017.05.002
  5. Desipramine induces apoptosis in hepatocellular carcinoma cells vol.38, pp.2, 2017, https://doi.org/10.3892/or.2017.5723
  6. Development of a sensitive and quantitative capillary LC-UV method to study the uptake of pharmaceuticals in zebrafish brain vol.410, pp.11, 2018, https://doi.org/10.1007/s00216-018-0955-4
  7. Xeroderma pigmentosum: overview of pharmacology and novel therapeutic strategies for neurological symptoms pp.00071188, 2019, https://doi.org/10.1111/bph.14557
  8. Klotho-Mediated Changes in Shelterin Complex Promote Cytotoxic Autophagy and Apoptosis in Amitriptyline-Treated Hippocampal Neuronal Cells vol.56, pp.10, 2015, https://doi.org/10.1007/s12035-019-1575-5
  9. Autophagy Modulators and Neuroinflammation vol.27, pp.6, 2015, https://doi.org/10.2174/0929867325666181031144605
  10. Repeated administration of fluvoxamine worsens gentamicin-induced nephrotoxicity in rats vol.9, pp.2, 2020, https://doi.org/10.4103/jrptps.jrptps_57_19
  11. Amitriptyline interferes with autophagy-mediated clearance of protein aggregates via inhibiting autophagosome maturation in neuronal cells vol.11, pp.10, 2015, https://doi.org/10.1038/s41419-020-03085-6