DOI QR코드

DOI QR Code

담배가루이(Bemisia tabaci, Aleyrodidae, Hemiptera)에서 Virus-induced Gene Silencing (VIGS) Vector를 이용하기 위한 cDNA Library 제작

Construction of cDNA Library for Using Virus-induced Gene Silencing (VIGS) Vector with the Sweetpotato Whitefly, Bemisia tabaci(Hemiptera: Aleyrodidae)

  • 고나연 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 임현섭 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과)
  • Ko, Na Yeon (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lim, Hyoun Sub (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 투고 : 2015.01.29
  • 심사 : 2015.05.06
  • 발행 : 2015.06.01

초록

담배가루이(Bemisia tabaci)는 외래해충으로 바이러스벡터로 작용하여, 토마토의 토마토황하잎말림병바이러스(TYLCV)를 비롯한 약 100여종의 바이러스를 매개하는 중요한 해충이다. 본 연구에서는 VIGS vector를 이용하여 담배가루이 방제를 위한 target 유전자들을 선발하기 위해 gateway system을 이용한 담배가루이 cDNA library 제작을 시도하였다. 첫 번째 방법으로 oligo d(T) primer를 사용하였을 때, 평균 약 1 kb의 insert와 $1.4{\times}10^4cfu$의 titer를 확인하였다. 그러나 insert size가 너무 커서 적절하지 않았다. 두 번째 방법으로 attB-N25 random primer를 이용하고, sonication을 6초 실시하여 다시 진행하였다. 그러나 확인되는 insert size는 다소 컸고, 몇몇은 insert가 너무 작아서 밴드가 확인 되지않았으며, $1.04{\times}10^54cfu$의 titer를 확인할 수 있었다. 세 번째 방법으로는 oligo d(T) primer를 이용하였고, sonication을 2초 실시하였다. 그 결과 300 bp~600 bp size의 insert가 확인되었으나, electro transformation을 사용한 첫번째, 두번째 방법에 비해 heat shock transformation을 사용하여 titer가 $5.2{\times}10^24cfu$로 매우 낮은 것을 확인 할 수 있었다. 결과적으로 cDNA library를 만들 때 먼저 random primer를 사용하여 First strand를 합성하여 poly A를 제거하고, 다음으로 sonication을 1초 실시하여 300~700 bp정도의 적절한 size의 insert를 생성하고, 마지막으로 electro-transformation을 실시하여 transformation 효율을 높인다면 VIGS vector에 적합한 cDNA library를 만들 수 있을 것으로 사료 된다.

The sweetpotato whitefly, Bemisia tabaci, is the major insect pest that transmitted over 100 plant viruses including tomato yellow leaf curl virus (TYLCV) of tomato plant as virus vector in the world. In this study, cDNA library of whitefly was constructed using Gateway system for selecting target gene in order to control of B. tabaci using virus-induced gene silencing (VIGS) vector with RNAi. First of all, when using oligo d(T) rimer, the calculated titer of cDNA library was confirmed with $1.4{\times}10^4$ clones and average insert sizes was confirmed with 1 kb. However, insert size was very big for construction of cDNA. Otherwise, when using attB-N25 random primer and sonication for 6 sec, the calculated titer of cDNA library was confirmed with $1.04{\times}10^5$ clones. But mostly insert band wasn't identified on the electrophoresis, because it seemed that insert size is too small (${\leq}100bp$), also the size of identified insert was somewhat big. Finally, when using oligo d(T) primer and sonication for 1 sec, cDNA insert of whitefly was appropriated for VIGS with 300-600 bp. However, cDNA sequence included a poly A and titer was very low to $5.2{\times}10^2$ clones. It was supposed that heat shock transformation was used instead of electro-transformation. It is considered that when constructing cDNA library for using VIGS vector, (1) random primer should be used for First strand cDNA synthesis in order to remove poly A and (2) sonication for 1 sec should be performed in order to get appropriated insert size and (3) electro-transformation should be performed in order to improve transformation efficiency.

키워드

참고문헌

  1. Baulcombe, D. 2004. RNA silencing in plants. Nature 431, 356-363. https://doi.org/10.1038/nature02874
  2. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nature Biotech. 25, 1322-1326. https://doi.org/10.1038/nbt1359
  3. Bedford, I.D., Briddon, R.W., Brwon, J.K., Rosell, R.C., Markham, P.G., 1994. Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann. Appl. Biol. 125, 311-325. https://doi.org/10.1111/j.1744-7348.1994.tb04972.x
  4. Bettencourt, R., Terenius, O., Faye, I., 2002. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol. Biol. 11, 267-271. https://doi.org/10.1046/j.1365-2583.2002.00334.x
  5. Boykin, L.M., Shatters, Jr. R.G., Rosell, R.C., Mckenzie, C.L., Bagnall, R.A., De Barro, P., d Frohlich, D.R., 2007. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol. Phylogen. Evol. 44, 1306-1319. https://doi.org/10.1016/j.ympev.2007.04.020
  6. Byrne, D.N., 1999. Migration and dispersal by the sweet potato whitefly, Bemisia tabaci. Agricul. For. Meteorol. 97, 309-316. https://doi.org/10.1016/S0168-1923(99)00074-X
  7. Christiaens, O., Swevers, L., Smagghe, G., 2014. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53, 307-314. https://doi.org/10.1016/j.peptides.2013.12.014
  8. Ghanim, M., Kontsedalov, S., Czosnek, H., 2007. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem. Mol. Biol. 37, 732-738. https://doi.org/10.1016/j.ibmb.2007.04.006
  9. Hahn, B.S., 2010. Recent studies on development of transgenic plants induced root-knot nematode resistance by RNA interference suppression of nematode genes and nematode prevention. Res. Plant Dis. 16, 10-20. https://doi.org/10.5423/RPD.2010.16.1.010
  10. Huvenne, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol. 56, 227-235. https://doi.org/10.1016/j.jinsphys.2009.10.004
  11. Jones, D., 2003. Plant viruses transmitted by whiteflies. Euro. J. Plant Pathol. 109, 197-221.
  12. Lu, Z.C., Wan, F.H., 2011. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). J. Exp. Biol. 214, 764-769. https://doi.org/10.1242/jeb.047415
  13. Leshkowitz, D., Gazit, S., Reuveni, E., Ghanim, M., Czosnek, H., Mckenzie, C., Shatters, R.L., Brown, J.K., 2006. Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genomics 7,79. https://doi.org/10.1186/1471-2164-7-79
  14. Liu, E., Page, J.E., 2008. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods 4, 1-13. https://doi.org/10.1186/1746-4811-4-1
  15. Liu, Y., Schiff, M., Dinesh-Kumar, S.P., 2002. Virus-induced gene silencing in tomato. Plant J. 31, 777-786. https://doi.org/10.1046/j.1365-313X.2002.01394.x
  16. Lu, R., Martin-Hernandez, A.M., Peart, J.R., Malcuit, I., Baulcombe, D.C., 2003. Virus-induced gene silencing in plants. Methods 30, 296-303. https://doi.org/10.1016/S1046-2023(03)00037-9
  17. Luo, Y., Wang, X., Yu, D., Chen, B., Kang, L., 2013. Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Insect Mol. Biol. 22, 574-583. https://doi.org/10.1111/imb.12046
  18. Price, D.R., Gatehouse, J.A., 2008. RNAi-mediated crop protection against insects. Trends Biotech. 26, 393-400. https://doi.org/10.1016/j.tibtech.2008.04.004
  19. Sapountzis, P., Duport, G., Balmand, S., Gaget, K., Jaubert-Possamai, S., Febvay, G., Charles, H., Rahbe, Y., Colella, S., Calevro, F., 2014. New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments. Insect Biochem. Mol. Biol. 51, 20-32. https://doi.org/10.1016/j.ibmb.2014.05.005
  20. Secker, A.E., Bedford, I.D., Markham, P.G., Williams, M.E.C., 1998. Squash, a reliable field indicator for the presence of the B biotype of tobacco whitefly, Bemisia tabaci. In: Brighton crop protection conference-pests and Diseases. British Crop Prot. Council, Farnham, UK. pp. 837-842.
  21. Sijen, T., Fleenor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H.A., Fire, A., 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465-476. https://doi.org/10.1016/S0092-8674(01)00576-1
  22. Upadhyay, S.K., Chandrashekar, K., Thakur, N., Verma, P.C., Borgio, J.F., Singh, P.K., Tuli, R., 2011. RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J. Biosci. 36, 153-161. https://doi.org/10.1007/s12038-011-9009-1
  23. Walshe, D.P., Lehane, S.M., Lehane, M.J., Haines, L.R., 2009. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol. Biol. 18, 11-19. https://doi.org/10.1111/j.1365-2583.2008.00839.x
  24. Whyard, S., Singh, A.D., Wong, S., 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39, 824-832. https://doi.org/10.1016/j.ibmb.2009.09.007

피인용 문헌

  1. Gene expression in plant according to RNAi treatment of the tobacco whitefly vol.42, pp.2, 2015, https://doi.org/10.7744/cnujas.2015.42.2.081