DOI QR코드

DOI QR Code

콜드조인트를 가진 OPC 및 GGBFS 콘크리트의 투수성 평가

Permeability Evaluation of OPC and GGBFS Concrete with Cold Joint

  • 최세진 (원광대학교 건축공학과) ;
  • 김성준 (한국건설기술연구원) ;
  • 문진만 (한남대학교 건설시스템 공학과) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • 투고 : 2015.04.01
  • 심사 : 2015.05.26
  • 발행 : 2015.08.30

초록

콘크리트는 다공성 매채로 투수성을 가지고 있으며, 투수성은 내구성 평가의 중요한 인자가 된다. 콘크리트는 이어치기의 지연을 통해서 콜드조인트를 가지게 되는데, 이러한 이음은 투수와 유해물질의 유입을 가속화시킨다. 본 연구에서는 고로 슬래그 미분말과 보통포틀랜트 시멘트를 사용하여 콜드조인트 콘크리트를 제조하였으며, 91일 재령 하에서 2주간 투수계수 및 유량을 측정하였다. 고로슬래그 미분말을 혼입한 배합에서는 투수성이 OPC 배합에 비해 0.89배 감소하였으며, 콜드조인트에도 보통배합에 비해 투수계수가 0.86배 감소하였다. 본 연구에서는 저압 투수법을 통하여 콜드조인트 및 혼화재가 투수성에 미치는 영향이 평가되었으며, 확률론적인 방법을 통하여 건전부와 콜드조인트부의 투수 변동성 또한 분석되었다.

Concrete, as a porous media, has permeability and it is considered as a major parameter for durability evaluation. Cold joint caused by delayed placing of concrete accelerates water permeation and intrusion of harmful ions. In the paper, concrete specimens containing GGBFS (Ground Granulated Blast Furnace Slag) and OPC (Ordinary Portland Cement) are prepared with cold joint section, and water permeability and water flow at the age of 91 days are measured for 2 weeks. Sound concrete with GGBFS shows decreased permeability to 89% for sound concrete with OPC and 0.86 of decreasing ratio is evaluated in GGBFS concrete with cold joint. Through WPT (Water Penetration Test), the effects of mineral admixture and cold joint on water permeability are evaluated, and variation in water behavior via cold joint is analyzed through probabilistic method as well.

키워드

참고문헌

  1. Park, M.-S., "A study on control of carbonation at cold joint of reinforced concrete structures", M.A.Sc Thesis, YONSEI University, 2001 (in Korean).
  2. JSCE, Concrete Cold Joint Problems and Countermeasures, Concrete Library, 2000, 103.
  3. ACI 224.3R-95, "Joints in concrete construction", American Concrete Institute, USA, Reapproved, 2001.
  4. Kwon, S.-J. and Na. Ung-Jin,, "Prediction of durability for RC columns with crack and joint under carbonation based on probabilistic approach", International Journal of Concrete Structures and Materials, Vol.5, No.1, 2011, pp.11-18. https://doi.org/10.4334/IJCSM.2011.5.1.011
  5. Yokozeki, K., Okada, K., Tsutsumi, T., and Watanabe, K., "Prediction of the service life of RC with crack exposed to chloride attack", Journal of Symposium: Rehabilitation of Concrete Structure, Vol.10, 1998, pp.1-6.
  6. Kwon, S.-J., Park, S.-S., Nam, S. H., and Cho, H. J., "A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City", Journal of Korea Structure Maintenance Institute, Vol.5, 2007, pp. 116-122 (in Korean).
  7. Hyun, T. Y., "Permeability of cracked concrete as a function of hydraulic pressure and crack width", M.A.Sc Thesis, Korea Advanced Institute of Science and Technology, 2008 (in Korean).
  8. Park, S.-S., Kwon, S.-J., Jung, S.H., and Lee, S.-W., "Modeling of water permeability in early aged concrete with cracks based on micro pore structure", Construction and Building Materials, Vol.27, No.1, 2012, pp.597-604. https://doi.org/10.1016/j.conbuildmat.2011.07.002
  9. Park, S.-S., Kwon, S.-J., and Jung, S. H., "Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation", Construction and Building Materials, Vol.29, 2012, pp.183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  10. Song, H.-W., Cho, H.-J, Park, S.-S., Byun K.-J., and Maekawa K., "Early-age cracking resistance evaluation of concrete structure", Concrete Science and Engineering, Vol.3, No.10, 2001, pp.62-72.
  11. Song, H.-W., Kwon, S.-J., Byun, K.-J., and Park, C.-K., "Predicting carbonation in early-aged cracked concrete," Cement and Concrete Research, Vol.36, 2006, pp.979-989. https://doi.org/10.1016/j.cemconres.2005.12.019
  12. Ishida, T., and Maekawa, K., "Modeling of durability performance of cementitious materials and structures basedon thermo-hygro physics", RILEM Proc-PRO29: life prediction and aging management of concrete structures, Vol.1, 2003, pp.39-49.
  13. Maekawa, K., Ishida, T., and Kishi, T., "Multi-scale modeling of concrete performance", Journal of Advanced Concrete Technology, Vol.1, No.1, 2003, pp.91-126. https://doi.org/10.3151/jact.1.91
  14. Ye, G., "Experimental Study and Numerical Simulation of the Development of the Microstructure and Permeability of the Cementitious Materials", Ph.D Dissertation of Delft University of Technology, The Netherlands, 2003.
  15. Song, H.-W., Back, S.-J., Lee, C.-H., and Kwon, S.-J. "Service life prediction of concrete structures under marine environment considering coupled deterioration", Journal of Restoration of Building and Monuments, Vol.12, No.4, 2006, pp.265-284.
  16. Thomas, M. D. A. and Bamforth, P. B., "Modeling chloride diffusion in concrete: Effect of fly ash and slag", Cement and Concrete Research, Vol.29, 1999, pp.487-95. https://doi.org/10.1016/S0008-8846(98)00192-6
  17. Ludirdja, D., Berger, R. L., and Young, F., "Simple method for measuring water permeability of concrete", ACI Materials Journal, Vol.86, 1990, pp.433-439.
  18. Song, H. W. and Kwon, S. J., Permeability characteristics of carbonated concrete considering capillary pore structure, Cement and Concrete Research, Vol.37, No.6, 2007, pp. 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011