DOI QR코드

DOI QR Code

지반조사에 의한 함안군 도항리 6호 고분 특성 규명

Characterizing Hamangun Dohangri 6th Tumulus Using Ground Survey

  • 이현재 (부산대학교 지질환경과학과) ;
  • 함세영 (부산대학교 지질환경과학과) ;
  • 박삼규 (한국지질자원연구원 광물자원연구본부) ;
  • 이충모 (부산대학교 지질환경과학과) ;
  • 오윤영 (부산대학교 지질환경과학과) ;
  • 웨이밍량 (부산대학교 지질환경과학과)
  • Lee, Hyun-Jae (Division of Earth Environmental System, Pusan National University) ;
  • Hamm, Se-Yeong (Division of Earth Environmental System, Pusan National University) ;
  • Park, Samgyu (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Chung-Mo (Division of Earth Environmental System, Pusan National University) ;
  • Oh, Yun-Yeong (Division of Earth Environmental System, Pusan National University) ;
  • Liang, Wei Ming (Division of Earth Environmental System, Pusan National University)
  • 투고 : 2015.03.20
  • 심사 : 2015.07.17
  • 발행 : 2015.08.28

초록

지질학적, 물리탐사기법, 지질공학적 방법을 통하여 함안군 도항리 6호고분의 축조 형태, 고분 축조에 사용된 재료의 원산지와 공학적 성질, 봉분과 석실부에 대한 안정성 등을 고찰하였다. 고분의 기반암인 함안층은 풍화를 받아 인력으로 굴착이 용이한 암반 특성을 나타내었다. 전기비저항 탐사에 의하면 봉분은 토사부를 나타내는 저비저항대와 암석편의 함량이 많은 암석부의 고비저항대로 구분되었다. 대부분의 석실부 개석은 함안층과 동일한 암석으로 구성되어 있으나, 개석의 일부는 연구지역의 최남단에서 산출되는 흑운모화강암과 동일하다. 토질 시험에 의하면, 봉분의 토사부는 낮은 함수비, 낮은 간극비, 적정한 단위중량으로 보아 다짐 정도가 매우 높은 재료임을 지시한다. 또한 봉분의 암석부의 강도는 일반적인 암반의 전단강도를 초과하고 있어 매우 안정성 있게 유지되고 있는 것으로 해석된다.

Hamangun Dohangri $6^{th}$ tumulus was characterized by using geological, geophysical, and geotechnical surveys in terms of the shape of the tombs, origin and geotechnical properties of tomb materials, safety of grave mound and burial chamber. The bedrock (Haman Formation sedimentary rock) forming the ground of the tomb, is weathered such that men can excavate the ground. The mound tomb is classified into soil part and rock part by low resistivity and high resistivity, respectively, through electrical resistivity survey. The burial chamber is mostly made by Haman Formation while some part is composed of granitic rock that is distributed in the most southern district of the study area. According to soil tests, the soil part of mound tomb shows low water content, low pore ratio, and proper unit weight that indicate highly compacted material. Additionally, the mound tomb is safe because the strength of the rock part of the mound tomb exceeds that of general rock.

키워드

참고문헌

  1. Anderson, D.L. (1989) Theory of the Earth, Blackwell, London.
  2. Choi, Y.G. and Kim, T.Y. (1963) 1:50,000 Geological map of Uiryong Sheet, Geological Survey of Korea, 12p.
  3. Claebout, J.F. (1976) Fundamentals of geophysical data processing, McGraw Hill, New York.
  4. Dahlin, T. (1996) 2D resistivity surveying for environmental and engineering applications. First Break, v.14, p.275-284.
  5. Dahlin, T. and Zhou, B. (2004) A numerical comparison of 2D resistivity imaging with ten electrode arrays, Geophysical prospecting, v.52, p.379-398. https://doi.org/10.1111/j.1365-2478.2004.00423.x
  6. Diamanti, N.G., Tsokas, G.N., Tsourlos, P.I. and Vafidis, A. (2005) Integrated interpretation of geophysical data in the archaeological site of Europos (Northern Greece). Archaeological Prospection, v.12, p.79-91. https://doi.org/10.1002/arp.249
  7. Foundation of East Asia Cultural Properties Institute (2005a) 1st briefing papers of excavation survey of Haman Dohangri 6th tomb.
  8. Foundation of East Asia Cultural Properties Institute (2005b) 2nd briefing papers of excavation survey of Haman Dohangri 6th tomb, 11p.
  9. Gibson, R.E. (1949) Experimental determination of the true cohesion & true angle of internal friction in clays, Geotechnique, v.1, n.3, p.189-204. https://doi.org/10.1680/geot.1949.1.3.189
  10. Hwang, S.I. and Yoon, S.O. (2000) The change of physical environment during Holocene and human life of the middle and downstream of Taehwa River in prehistoric times in Ulsan, Korea, Journal of the Korean Archaeological Society, v.43, p.67-112.
  11. Hwang, S.I. and Yoon, S.O. (2002) The environmental change and human activities at Sejuk Hwanseong-Dong, Ulsan City, southeastern coast of Korea during the middle Holocene, Journal of the Korean Archaeological Society, v.48, p.35-57.
  12. Kim, J.H., Yi, M.J., Son, J.S, Cho, S.J. and Park, S.G. (2005) Effective 3D GPR survey for the exploration of old remains, Mulli-Tamsa, v.8, n.4, p.262-269.
  13. Korea Express Corporation (2000) Design standard of road. 4-27.
  14. Loke, M.H (2012) Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo Software, Malaysia. 160p.
  15. Oh, H., Yi, M.J., Kim, J.H. and Shin, J. (2011) 3-D Resistivity imaging of a large scale tumulus, Jigu-Mulli-wa-Mulli-Tamsa, v.14, n.4, p.316-323.
  16. Taner, M.T. and Koehler, F. (1969) Velocity spectra: digital computer derivation and applications of velocity functions, Geophysics, v.34, p.859-881. https://doi.org/10.1190/1.1440058
  17. Tsokas, G.N., Papazachos, C.B., Vafidis, A., Loukoyiannakis, M.Z., Vargemezis, G. and Tzimeas, K. (1995) The detection of monumental tombs buried in tumuli by seismic refraction, Geophysics, v.60, n.6, p.1735-1742. https://doi.org/10.1190/1.1443906
  18. Tucker, P.M. and Yorkston, H.J (1973) Pitfalls in seismic interpretation, Society of Exploration Geophysicists, Monograph Series 2, Tulsa.
  19. Vafidis, A., Economou, N, Ganiatsos, Y., Manakou, M., Poulioudis, G., Soulas, G., Vrontaki, E., Sarris, A., Guy, M. and Kalpaxis, Th. (2005) Integrated geophysical studies at ancient Itanos (Greece), Archaeological Science, v.32, p.1023-1036. https://doi.org/10.1016/j.jas.2005.02.007