DOI QR코드

DOI QR Code

Assessment of Rocks and Alteration Information Extraction using ASTER data for Övörkhangaii Province, Mongolia

ASTER 영상자료를 활용한 몽골 오보르항가이(Övörkhangai) 일대 암상 빛 변질 정보추출의 활용가능성 평가

  • Jeong, Yongsik (Department of Astronomy, Space Science, & Geology, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Koh, Sang-Mo (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Heo, Chul-Ho (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 정용식 (충남대학교 우주.지질학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 고상모 (한국지질자원연구원 광물자원연구본부) ;
  • 허철호 (한국지질자원연구원 광물자원연구본부)
  • Received : 2015.07.01
  • Accepted : 2015.08.17
  • Published : 2015.08.28

Abstract

This study examined the possibility to extract potential alteration zones and lithologic information based on ASTER band ratio techniques for mineralized area located in ${\ddot{O}}v{\ddot{o}}rkhangai$ province, Mongolia, and the effectiveness of remote sensing as a preliminary exploration tool for mineral exploration was tested. The results of ABRLO, PBRLO, and PrBRLO models indicated that the detection of argillic zone requires the verification of the samples to verify hydrothermal alteration minerals as clay minerals can formed by weathering process, whereas phyllic-propylitic zones were considerably related to the spatial distribution of the intrusive bodies, geological structures, and ore distribution. QI and MI results showed that QI is more useful for sedimentary rocks such as conglomerate and sandstone than meta-sedimentary like quartzite, and MI faced relatively uncertain in detection of felsic or mafic silicate rocks. QI and MI may require additional geologic information such as the characteristics of samples and geological survey data to improve extraction of lithologic information, and, if so, it is expected that remote sensing technique would contribute significantly as a preliminary geological survey method.

본 연구는 몽골 오보르항가이(${\ddot{O}}v{\ddot{o}}rkhangai$) 지역에 발달한 광화대 일대를 대상으로, ASTER 밴드를 이용한 비연산 모델을 활용하여 잠재적 변질대 및 광역적 암상정보추출의 가능성에 대한 잠재성 평가를 실시하고, 원격탐사의 활용 가능성을 검토하였다. ABRLO, PBRLO, PrBRLO 비연산 모델을 적용한 결과, 니질 변질대를 이루는 주광물인 점토광물은 열수변질 이외의 작용에 의한 산물로써도 산출이 가능하므로, 현장 샘플을 통한 검증이 필요할 것으로 사료되며, 필릭-프로피리틱 변질대의 경우, 분포양상이 변성퇴적암류-관입체 관계, 구조 및 광화대 위치에 관련된 정보가 상당한 연관성을 보이며, 이는 초기 자원탐사 시 필릭-프로피리틱 변질대와 관련된 지역의 잠재성을 평가하는데 유용할 것으로 판단된다. QI와 MI 비연산 모델을 적용한 결과, 규암화된 변성퇴적암에서보다 상대적으로 변성을 받지 않은 역암, 사암질의 퇴적층을 대상으로 QI가 더 효과적일 것으로 생각되며, MI의 경우 연구지역 내에서 규장질 혹은 고철질의 규산염 암석의 확인에 대한 신뢰도는 상대적으로 미약한 것으로 판단된다. 따라서 QI과 MI 비연산 모델이 신뢰도 높은 암상정보추출에 있어 어려움이 동반될 것으로 사료되나, 현장샘플 및 지표지질조사자료 등이 보충된다면, 기초지질 사전탐사로써 암상정보의 단서를 얻는데 상당한 효과를 기대할 수 있을 것으로 판단된다.

Keywords

References

  1. Aboelkhair, H., Ninomiya, Y., Watanabe, Y. and Sato, I. (2010) Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. Journal of African Earth Sciences, v.58(1), p.141-151. https://doi.org/10.1016/j.jafrearsci.2010.01.007
  2. Abrams, M., Hook, S. and Ramachandran, B. (2002) ASTER user handbook, version 2. Jet propulsion laboratory, California, 135p.
  3. Amer, R., Kusky, T. and Ghulam, A. (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences, v.56(2), p.75-82. https://doi.org/10.1016/j.jafrearsci.2009.06.004
  4. Corrie, R., Ninomiya, Y. and Alitchison, J. (2011) Applying Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral indices for geological mapping and mineral identification on the Tibetan Plateau. International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Science, XXXVIII, p.464-469.
  5. Dejidmaa, G., Otgon-Erdene, D. and Gurragchaa, I. (2009) Geological map of Mongolia, Khangai-Khentii area L-48-XIV, scale 1:200000. Geological Information center of Mineral Resource authority of Mongolia.
  6. Di Tommaso, I. and Rubinstein, N. (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, v.32(1), p.275-290. https://doi.org/10.1016/j.oregeorev.2006.05.004
  7. Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S. and Khale, A.B. (1998) A temperature and emissivity separation algorithm for Advanced SpaceborneThermal Emission and Reflection radiometer (ASTER) images. IEEE Transactionon Geoscience and Remote Sensing, v.36, p.1113-1126. https://doi.org/10.1109/36.700995
  8. Green, A.A., Berman, M., Switzer, P. and Craig, M.D. (1988) A transformation for orderingmultispectral data in terms of image quality with implications for noise removal. IEEE Transaction on Geoscience and Remote Sensing, v.26, p.65-74. https://doi.org/10.1109/36.3001
  9. Hauff, P. (2008) An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration. Arvada, Colorado: Spectral International Incorporation, 80001, p.303-403.
  10. He, Z., He, B. and Ying, C. (2010) Hydrothermal alteration mapping using aster data in East Kunlun Mountains, China. Geoscience and Remote Sensing Symposium, IGARSS'10. IEEE 2010 International, p. 4514-4517.
  11. Hewson, R.D., Cudahy, T.J. and Huntington, J.F. (2001) Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data. Geoscience and Remote Sensing Symposium, IGARSS'01, IEEE 2001 International, v.2, p.724-726.
  12. Kerr, A., Rafuse, H., Sparkes, G., Hinchey, J. and Sandeman, H. (2011) Visible/infrared spectroscopy (VIRS) as a research tool in economic geology: background and pilot studies from Newfoundland and Labrador. Geological Survey, Report 11-1, 145-166p.
  13. Lee, B.H., Kim, I.J. and Heo, C.H. (2013) Characteristics of W-Mo Mineralization in Dulaankhaikhan area, Mongolia. Journal of Mineral Society of Korea(Minerals & Industry), v.26, p.22-31.
  14. Lee, H.J., Kim, I.J., Chi, K.H., Kim, E.J. and Jang, D.H. (2009) Extraction Model of Non-metallic Mine using Multi-spectral ASTER SWIR Data. Journal of The Korean Geomorphological Association, v.16, p.77-86.
  15. Mars, J.C. and Rowan, L.C. (2006) Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, v.2(3), p.161-186. https://doi.org/10.1130/GES00044.1
  16. Ninomiya, Y. (2002) Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. International Society for Optics and Photonics, 2002, p.191-202
  17. Ninomiya, Y. and Fu, B. (2002) Quartz Index, Carbonate Index and SiO2 Content Index Defined for ASTER TIR Data. Journal of Remote Sensing Society of Japan, v.22(1), p.50-61.
  18. Ninomiya, Y. (2003a) Rock type mapping with indices defined for multispectral thermal infrared ASTER data: case studies. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II, SPIE v.4886, p.123-132.
  19. Ninomiya, Y. (2003b) Advanced remote lithologic mapping in ophiolite zone with ASTER multispectral thermal infrared data. Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. IEEE 2003 International, v.3, p.1561-1563.
  20. Ninomiya, Y., Fu, B. and Cudahy, T.J. (2005) Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared "radiance-at-sensor" data. Remote Sensing of Environment, v.99(1), p.127-139. https://doi.org/10.1016/j.rse.2005.06.009
  21. Ninomiya, Y. and Fu, B. (2010) Regional scale lithologic mapping in western Tibet using ASTER thermal infrared multispectral data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v.38, p.454-458.
  22. Prost. G.L (2001) Remote Sensing for Geologists : A Guide to Image Interpretation. 2nd(ed.), Taylor & Francis, New York, 78-82p.
  23. Rowan, L.C. and Mars, J.C. (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, v.84(3), p.350-366. https://doi.org/10.1016/S0034-4257(02)00127-X
  24. Rowan, L.C., Mars, J.C. and Simpson, C.J. (2005) Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, v.99(1), p.105-126. https://doi.org/10.1016/j.rse.2004.11.021
  25. Rowan, L.C., Schmidt, R.G. and Mars, J.C. (2006) Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, v.104(1), p.74-87. https://doi.org/10.1016/j.rse.2006.05.014
  26. Salisbury, J.W., Walter, L.S., Vergo, N. and D'Aria, D.M. (1991) Infrared (2.1 to 2.5 m) Spectra of Minerals. The Johns Hopkins University Press, Baltimore. 294p.
  27. Son, Y.S., Kang, M.Y. and Yoon, W.J. (2011) Study of the Pyrophyllite Deposit Characteristics in Nohwa-do Using ASTER Image. The Korean Society of Mineral and Energy Resources Engineers, v.48(3), p.335-350.
  28. Son, Y.S., Kang, M.Y. and Yoon, W.J. (2012) Regional Mapping of Alteration of the Oyu Tolgoi Cu-Au Deposit in Molgolia Using Band Math Method with ASTER Image. The Korean Society of Mineral and Energy Resources Engineers, v.49(2), p.157-165.
  29. Son, Y.S., Kang, M.K. and Yoon, W.J. (2014) Lithological and mineralogical survey of the Oyu Tolgoi region, Southeastern Gobi, Mongolia using ASTER reflectance and emissivity data. International Journal of Applied Earth Observation and Geoinformation, v.26, p.205-216. https://doi.org/10.1016/j.jag.2013.07.004