DOI QR코드

DOI QR Code

Effect of Extraction Conditions on in vitro Antioxidant Activities of Root Bark Extract from Ulmus pumila L.

추출조건에 따른 유근피 추출물의 항산화 활성

  • Kim, Jae-Min (Department of Food science and Biotechnology, Kangwon National University) ;
  • Cho, Myoung-Lae (Department of Food science and Biotechnology, Kangwon National University) ;
  • Seo, Kyu-Eun (Department of Food science and Biotechnology, Kangwon National University) ;
  • Kim, Ye-Seul (Department of Food science and Biotechnology, Kangwon National University) ;
  • Jung, Tae-Dong (Department of Food science and Biotechnology, Kangwon National University) ;
  • Kim, Young-Hyun (Department of Food science and Biotechnology, Kangwon National University) ;
  • Kim, Dan-Bi (Department of Food science and Biotechnology, Kangwon National University) ;
  • Shin, Gi-Hae (Department of Food science and Biotechnology, Kangwon National University) ;
  • Oh, Ji-Won (Department of Food science and Biotechnology, Kangwon National University) ;
  • Lee, Jong Seok (National Institute of Biological Resources) ;
  • Lee, Jin-Ha (Department of Food science and Biotechnology, Kangwon National University) ;
  • Kim, Jong-Yae (Department of Food science and Biotechnology, Kangwon National University) ;
  • Lee, Dae-Won (Department of Jeongseon Yaccho) ;
  • Lee, Ok-Hwan (Department of Food science and Biotechnology, Kangwon National University)
  • 김재민 (강원대학교 식품생명공학과) ;
  • 조명래 (강원대학교 식품생명공학과) ;
  • 서규은 (강원대학교 식품생명공학과) ;
  • 김예슬 (강원대학교 식품생명공학과) ;
  • 정태동 (강원대학교 식품생명공학과) ;
  • 김영현 (강원대학교 식품생명공학과) ;
  • 김단비 (강원대학교 식품생명공학과) ;
  • 신기해 (강원대학교 식품생명공학과) ;
  • 오지원 (강원대학교 식품생명공학과) ;
  • 이종석 (국립생물자원관) ;
  • 이진하 (강원대학교 식품생명공학과) ;
  • 김종예 (강원대학교 식품생명공학과) ;
  • 이대원 (정선약초백화점) ;
  • 이옥환 (강원대학교 식품생명공학과)
  • Received : 2015.03.27
  • Accepted : 2015.04.30
  • Published : 2015.08.31

Abstract

This study investigated optimal extraction conditions for application of Ulmus pumila L. as a natural antioxidant. U. pumila L. was extracted using ethanol (EtOH) at various concentrations (0, 40, and 80%) and extraction times (1, 2, and 3 h) at $70^{\circ}C$ and then evaluated for extraction yield, total phenolic contents, total flavonoid contents, as well as antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, reducing power, and oxygen radical absorbing capacity (ORAC)]. Antioxidant activities were correlated with total phenolic and flavonoid contents. Of the solvent conditions, 80% EtOH extracts for 3 h at $70^{\circ}C$ showed the highest total phenolic and flavonoid contents with strong antioxidant activities, although there were no significant time effects on DPPH and ABTS radical scavenging activities and reducing power. However, ORAC values of all EtOH extracts remarkably increased in a time-dependent manner. In addition, 80% EtOH extract for 3 h exhibited strong antioxidant effects on HDF and 3T3-L1 cells. Therefore, the antioxidant capacity of U. pumila L., may due to phenolic and flavonoid contents, and extraction conditions were 80% EtOH for 3 h at $70^{\circ}C$. This extract could be a good source for natural antioxidants.

본 연구는 유근피를 항산화 소재로 사용하기 위한 기초 자료를 제공하고자 에탄올의 농도(0, 40, 80% 에탄올) 및 추출 시간(1, 2, 3시간)이 다른 조건에서 추출하였으며, 이들 추출물의 총 폴리페놀 및 플라보노이드 함량을 측정하였다. 또한 다양한 추출물의 DPPH 라디칼 소거능, ABTS 라디칼 소거능, 환원력, ORAC value 등의 항산화 활성을 측정하였으며, 총 폴리페놀 및 플라보노이드 함량과 항산화 활성과의 연관성을 분석하였다. 그 결과 유근피 추출물은 80% 에탄올로 3시간 추출하였을 때 가장 높은 총 폴리페놀 및 플라보노이드 함량과 항산화 활성을 보였다. 또한 DPPH 및 ABTS 라디칼 소거능, 환원력은 에탄올 함량에 따른 활성 차이는 보였으나 추출시간에 따른 항산화 활성 차이는 보이지 않았다. 하지만 ORAC는 유근피 추출물의 추출시간이 증가함에 따라 함께 증가하였다. 이상의 결과로 볼 때 유근피 추출물은 80% 에탄올을 이용하여 $70^{\circ}C$에서 3시간 추출을 할 때 항산화 활성을 갖는 phenolic 및 flavonoid 계열의 유효성분이 가장 많이 추출되었다. 또한 유근피 80% 에탄올 3시간 추출물은 피부 섬유아세포와 3T3-L1 지방세포에서 세포독성을 나타내지 않았고 피부 섬유아세포에서 산화적 스트레스에 대한 세포 보호 효과를 가졌으며, 3T3-L1 지방세포에서 활성산소종 생성량을 감소하였다. 따라서 높은 항산화력을 가진 유근피 추출물은 천연 항산화제로 충분히 사용 가능할 것으로 사료된다.

References

  1. Droge W. 2002. Free radicals in the physiological control of cell function. Physiol Rev 82: 47-95. https://doi.org/10.1152/physrev.00018.2001
  2. Willcox JK, Ash SL, Catignani GL. 2004. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44:275-295. https://doi.org/10.1080/10408690490468489
  3. Gardner PR, Fridovich I. 1991. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266: 19328-19333.
  4. Cho ML, Lee DJ, Lee HS, Lee YJ, You SG. 2013. LPS-induced NO inhibition and antioxidant activities of ethanol extracts and their solvent partitioned fractions from four brown seaweeds. Ocean Sci J 48: 349-359. https://doi.org/10.1007/s12601-013-0033-y
  5. Jo HJ, Kim JW, Yoon JA, Kim KI, Chung KH, Song BC, An JH. 2014. Antioxidant activities of amaranth (Amaranthus spp. L.) flower extracts. Korean J Food & Nutr 27:175-182. https://doi.org/10.9799/ksfan.2014.27.2.175
  6. Park JC, Yee ST. 2000. Functional food and bioactive constituents from oriental medicine resources. Food Industry and Nutrition 5(3): 27-37.
  7. Kim KB, Jo BS, Park HJ, Park KT, An BJ, Ahn DH, Kim MU, Chae JW, Cho YJ. 2012. Healthy functional food properties of phenolic compounds isolated from Ulmus pumila. Korean J Food Preserv 19: 909-918. https://doi.org/10.11002/kjfp.2012.19.6.909
  8. Lee EH, Park CW, Jung YJ. 2013. Anti-inflammatory and immune-modulating effect of Ulmus davidiana var. japonica Nakai extract on a macrophage cell line and immune cells in the mouse small intestine. J Ethnopharmacol 146:608-613. https://doi.org/10.1016/j.jep.2013.01.035
  9. Jung MJ, Heo SI, Wang MH. 2008. Free radical scavenging and total phenolic contents from methanolic extracts of Ulmus davidiana. Food Chem 108: 482-487. https://doi.org/10.1016/j.foodchem.2007.10.081
  10. Lee MK, Kim YC. 2001. Five novel neuroprotective triterpene esters of Ulmus davidiana var. japonica. J Nat Prod 64: 328-331. https://doi.org/10.1021/np0004799
  11. Yun JS, Pahk JW, Lee JS, Shin WC, Lee SY, Hong EK. 2011. Inonotus obliquus protects against oxidative stress-induced apoptosis and premature senescence. Mol Cells 31:423-429. https://doi.org/10.1007/s10059-011-0256-7
  12. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 32-1-13.
  13. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41. https://doi.org/10.1021/jf950190a
  14. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Enthropharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  15. Stagos D, Portesis N, Spanou C, Mossialos D, Aligiannis N, Chaita E, Panagoulis C, Reri E, Skaltsounis L, Tsatsakis AM, Kouretas D. 2012. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food Chem Toxicol 50: 4115-4124. https://doi.org/10.1016/j.fct.2012.08.033
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Oyaizu M. 1986. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  18. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50: 4437-4444. https://doi.org/10.1021/jf0201529
  19. Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49: 4619-4626. https://doi.org/10.1021/jf010586o
  20. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752-1761. https://doi.org/10.1172/JCI21625
  21. Blumberg JM, Tzameli I, Astapova I, Lam FS, Flier JS, Hollenberg AN. 2006. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem 28: 11205-11213.
  22. Sa JH, Kim NS, Bae CM, Kim NY, Shim HY, Chun JM, Ko SH, Lee HH, Shin IC, Jeong KJ, Han KS. 2011. Survey for approximate composition and mineral content of medicinal plants marketed in Gangwon province. Rep Inst Health & Environ 22: 42-51.
  23. Jeong KY, Kim ML. 2012. Physiological activities of Ulmus pumila L. extracts. Korean J Food Preserv 19: 104-109.
  24. Seo EJ, Hong ES, Choi MH, Kim KS, Lee SJ. 2012. The antioxidant and skin whitening effect of Artemisia iwayomogi extracts. Korean J Food Sci Technol 44: 89-93. https://doi.org/10.9721/KJFST.2012.44.1.089
  25. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36: 333-338.
  26. Kim SJ, Kweon DH, Lee JH. 2006. Investigation of antioxidative activity and stability of ethanol extracts of licorice root (Glycyrrhiza glabra). Korean J Food Sci Technol 38:584-588.
  27. Feeney MJ. 2004. Fruits and the prevention of lifestyle-related diseases. Clin Exp Pharmacol Physiol 31: S11-S13. https://doi.org/10.1111/j.1440-1681.2004.04104.x
  28. Bong JG, Park Y. 2010. Antioxidant effect of hederagenin 3-O-b-D-glucopyranosyl(1$\rightarrow$3)-a-L-rhamnopyranosyl(1$\rightarrow$2)-a-L-arabino pyranoside (HDL) isolated from root bark of Ulmus davidiana. J Life Sci 20: 281-291. https://doi.org/10.5352/JLS.2010.20.2.281
  29. Speisky H, Lopez-Alarcon C, Gomez M, Fuentes J, Sandoval-Acuna C. 2012. First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the south Andes region of South America. J Agric Food Chem 60: 8851-8859. https://doi.org/10.1021/jf205167k
  30. Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290-4302. https://doi.org/10.1021/jf0502698
  31. Lee OH, Kwon YI, Hong HD, Park CS, Lee BY, Kim YC. 2009. Production of reactive oxygen species and changes in antioxidant enzyme activities during differentiation of 3T3-L1 adipocyte. J Korean Soc Appl Biol Chem 52: 70-75.

Cited by

  1. Antioxidant Activity of 11 Species in Korean Native Forest Plants vol.28, pp.6, 2015, https://doi.org/10.9799/ksfan.2015.28.6.1098
  2. Anti-oxidative and anti-proliferative activities of acetone extract of the cortex ofUlmus pumilaL. vol.59, pp.2, 2016, https://doi.org/10.3839/jabc.2016.024
  3. Stability of Ethanolic Extract from Cirsium setidens Nakai vol.31, pp.4, 2016, https://doi.org/10.13103/JFHS.2016.31.4.304
  4. Effect of extract temperature and duration on antioxidant activity and sensory characteristics of Ulmus pumila bark extract vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.995
  5. Influence of extraction conditions on antioxidant activities and catechin content from bark of Ulmus pumila L. vol.59, pp.3, 2016, https://doi.org/10.1007/s13765-016-0165-8
  6. Ulmus macrocarpa Hance Extracts Attenuated H2O2 and UVB-Induced Skin Photo-Aging by Activating Antioxidant Enzymes and Inhibiting MAPK Pathways vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061200
  7. Physiological Activities and Inhibitory Effect of Extracts of Cynanchi wilfordii Radix and Perilla sikokiana against Cell Differentiation in 3T3-L1 Adipocytes vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.642
  8. Effect of Aronia, Beet and Prickly Pear Powder on the Quality Characteristics and Antioxidant Activities of Turnip Mul-kimchi vol.34, pp.3, 2018, https://doi.org/10.9724/kfcs.2018.34.3.287