DOI QR코드

DOI QR Code

Improvement Effect of Artificial Rice Containing Curcuma longa L. Extract on Lipid Parameters in C57BL/6J Mice

C57BL/6J 마우스에서 울금(Curcuma longa L.) 추출물이 첨가된 인조쌀의 체내 지질 수준 개선 효과

  • Yook, Jin-Seon (Department of Food Science and Human Nutrition, Chonbuk National University) ;
  • Kim, Mina (Department of Food Science and Human Nutrition, Chonbuk National University) ;
  • Lee, Seung-Jae (J eonbuk Institute for Food-Bioindustry) ;
  • Choi, Jong-Un (Hanwoomul The Agri. Union Co.) ;
  • Cha, Youn-Soo (Department of Food Science and Human Nutrition, Chonbuk National University)
  • Received : 2015.04.30
  • Accepted : 2015.07.14
  • Published : 2015.08.31

Abstract

; This study investigated the improvement effects of artificial rice containing Curcuma longa L. on lipid parameters in 3T3-L1 cells and C57BL/6J mice. Mice were divided into four groups, normal diet group (ND), high-fat diet group (HD), 20% artificial group (A20), and 20% Curcuma longa L. artificial rice group (C20), for 14 weeks. Adipogenesis was significantly suppressed compared with non-treated control at a concentration of $20{\mu}g/mL$. After the animal experiment, food efficiency ratio was elevated in the experimental group due to high-fat diet, whereas it was reduced in the A20 group and significantly reduced in the C20 group. Epididymal fat pad weight was significantly diminished in the C20 group. In addition, serum triglycerides were significantly reduced in the A20 and C20 groups compared to the HD group. Moreover, serum cholesterol level tended to decrease in the A20 group and significantly decreased in the C20 group compared with the HD group. According to these results, we can know that Curcuma longa L.-containing artificial rice has an improvement effect on lipid metabolism.

본 연구에서는 울금의 메탄올 추출물을 제조하고 3T3-L1 지방세포 모델을 이용하여 세포 수준에서 울금 인조쌀의 지방구 형성 조절을 통한 지질축적 억제능을 평가하였다. 더 나아가 C57BL/6J 마우스에 고지방식이와 함께 인조쌀, 울금 추출물이 첨가된 인조쌀을 공급하였을 때 체중과 지질대사의 변화를 관찰하였다. 세포 실험의 결과로부터 울금 메탄올 추출물을 처리한 후 $20{\mu}g/mL$의 농도에서 유의적인 지방구형성 억제를 관찰하였다. 동물 실험에서는 식이효율을 측정한 결과 인조쌀을 섭취한 군에서 그 효율이 낮아졌으며, 특히 울금 인조쌀을 섭취한 군에서 유의적으로 감소하였다. 부고환 지방 무게는 인조쌀 섭취군에서는 고지방섭취군과 차이를 보이지 않았지만, 울금 인조쌀을 섭취한 군에서는 유의적으로 낮아졌다. 혈청 지질 수준은 인조쌀군과 울금 인조쌀군 모두 고지방식이군에 비하여 개선되는 결과를 보였다. 혈청 중성지방은 인조쌀군과 울금 인조쌀군 모두유의적으로 낮아졌으며, 혈청 콜레스테롤 함량은 고지방식이군에 비해 인조쌀군에서 감소하는 경향을 보였고 울금 인조쌀군에서는 유의적으로 감소되었다. 이러한 결과를 통해 울금 이 첨가된 인조쌀에 다량 함유된 식이섬유소와 여러 생리활성물질이 지질대사를 개선시키고 지방 축적을 억제하여 일상식을 통한 체내 지질 수준 개선 효과를 기대해 볼 수 있을 것이라 사료된다.

Keywords

References

  1. Jung JW. 2006. Food filed patents reports on the functional rice. Patent 21 66: 38-43.
  2. Jeon NS. 2013. New growth of industrialization study of functional rice and rice processing industry. Policy Focus 1-53.
  3. Park JH, Kwon OO. 2007. A study on consumption behavior of health functional food. Korean J Food Marketing Economics 24: 43-57.
  4. Weaver RD. 1995. Valuing food safety and nutrition. Westview Press, Boulder, Co, USA. p 51.
  5. Wieringa NF, van der Windt HJ, Zuiker RR, Dijkhuizen L, Verkerk MA, Vonk RJ, Swart JA. 2008. Positioning functional foods in an ecological approach to the prevention of overweight and obesity. Obes Rev 9: 464-473. https://doi.org/10.1111/j.1467-789X.2008.00470.x
  6. Aziz HA, Tan YT, Peh KK, Yam MF. 2010. Direct effect of khat and garlic extracts on blood lipids contents: Preliminary in vitro study. Obes Res Clin Pract 4: e247-e342. https://doi.org/10.1016/j.orcp.2010.07.001
  7. Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J Agric Food Chem 47: 3963-3966. https://doi.org/10.1021/jf990347p
  8. WHO. 10 facts on obesity. http://www.who.int/features/factfiles/obesity/facts/en/index1.html (accessed May 2015).
  9. Korean Statistical Information Service (2005-2014). http://kosis.kr/statHtml/statHtml.do?orgId=117&tblId=DT_117_12_Y027&vw_cd=MT_ZTITLE&list_id=117_11758_002&seqNo=&lang_mode=ko&language=kor&obj_varid=&itm_id=&conn_path=E1 (accessed Apr 2015).
  10. Lee HK. 1990. Obesity and its associated diseases. Korean J Nutr 23: 341-346.
  11. Lee HJ, Lee KH, Park E, Chung HK. 2010. Effect of onion extracts on serum cholesterol in borderline hypercholesterolemic participants. J Korean Soc Food Sci Nutr 39:1783-1789. https://doi.org/10.3746/jkfn.2010.39.12.1783
  12. Korean National Health & Nutrition Examination Survey(2013). Health Statistics, Dyslipidemia. https://knhanes.cdc. go.kr/knhanes/eng/sub01/sub01_05.do (accessed May 2015).
  13. Lee SY. 2010. Trends and prospect in market of health functional food. 2007. Food Science and Industry 40(2): 16-20.
  14. Ministry of Food and Drug Safety. Functional food, cholesterol improvement. http://www.foodnara.go.kr/hfoodi/ (accessed May 2015).
  15. Oh H, Park H, Ju MS, Jung SY, Oh MS. 2010. Comparative study of anti-oxidant and anti-inflammatory activities between Curcumae longae Radix and Curcumae longae Rhizoma. Kor J Herbology 25: 83-91.
  16. Roth GN, Chandra A, Nair MG. 1998. Nobel bioactivities of Curcuma longa constituents. J Nat Prod 61: 542-545. https://doi.org/10.1021/np970459f
  17. An BJ, Lee JY, Park TS, Pyeon JR, Bae HJ, Song MA, Baek EJ, Park JM, Son JH, Lee CE, Choi KI. 2006. Antioxidant activity and whitening effect of extraction conditions in Curcuma longa L. Korean J Medicinal Crop Sci 14: 168-172.
  18. Ammon HP, Wahl MA. 1991. Pharmacology of Curcumin longa. Planta Med 57: 1-7. https://doi.org/10.1055/s-2006-960004
  19. Song EK, Cho H, Kim JS, Kim NY, An NH, Kim JA, Lee SH, Kim YC. 2001. Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa. Planta Med 67: 876-877. https://doi.org/10.1055/s-2001-18860
  20. Masuda T, Isobe T, Jitoe A, Nakatani N. 1992. Antioxidative curcuminoids from rhizomes of Curcuma xanthorrhiza. Phytochem 31: 3645-3647. https://doi.org/10.1016/0031-9422(92)83748-N
  21. Shon MS, Kim GN. 2014. 3T3-L1 anti-oxidant and antiobese activities of turmeric (Curcuma longa L.) extract in 3T3-L1 cells. Kor J Aesthet Cosmetol 12: 169-175.
  22. Akram M, Shahab-Uddin, Ahmed A, Usmanghani K, Hannan A, Mohiuddin E, Asif M. 2010. Curcuma longa and curcumin: A review article. Rom J Biol-Plant Biol 55: 65-70.
  23. Weisberg SP, Leibel R, Tortoriello DV. 2008. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 149: 3549-3558. https://doi.org/10.1210/en.2008-0262
  24. Wickenberg J, Ingemansson SL, Hlebowicz J. 2010. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutr J 9: 43. https://doi.org/10.1186/1475-2891-9-43
  25. Park J, Lee J, Jun W. 2013. Radical scavenging and antiobesity effects of various extracts from turmeric (Curcuma longa L.). J Korean Soc Food Sci Nutr 42: 1908-1914. https://doi.org/10.3746/jkfn.2013.42.12.1908
  26. Kim M, Park JE, Song SB, Cha YS. 2015. Effects of black adzuki bean (Vigna angularis) extract on proliferation and differentiation of 3T3-L1 preadipocytes into mature adipocytes. Nutrients 7: 277-292. https://doi.org/10.3390/nu7010277
  27. Kim J, Park J, Jun W. 2014. Anti-obesity effect of ethyl acetate fraction from 50% ethanol extract of fermented Curcuma longa L. in 3T3-L1 cells. J Korean Soc Food Sci Nutr 43: 1681-1687. https://doi.org/10.3746/jkfn.2014.43.11.1681
  28. Ejaz A, Wu D, Kwan P, Meydani M. 2009. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 139: 919-925. https://doi.org/10.3945/jn.108.100966
  29. Ntambi JM, Kim YC. 2000. Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S.
  30. Hussein MA, El-Maksoud HA. 2013. Biochemical effects of resveratrol and curcumin combination on obese diabetic rats. Molecular & Clinical Pharmacology 4: 1-10.
  31. Ahn IS, Park KY, Do MS. 2007. Weight control mechanisms and antiobesity functional agents. J Korean Soc Food Sci Nutr 36: 503-513. https://doi.org/10.3746/jkfn.2007.36.4.503
  32. Asai A, Miyazawa T. 2001. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr 131: 2932-2935.
  33. Lee SH, Park HJ, Cho SY, Han GJ, Chun HK, Hwang HG, Choe HC. 2004. Supplementary effect of the high dietary fiber rice on lipid metabolism in diabetic KK mice. Korean J Nutr 37: 81-87.
  34. Talati R, Baker WL, Pabilonia MS, White CM, Coleman CI. 2009. The effects of barley-derived soluble fiber on serum lipids. Ann Fam Med 7: 157-163. https://doi.org/10.1370/afm.917
  35. Knuckles BE, Hudson CA, Chiu MM, Sayre RN. 1997. Effect of β-glucan barley fractions in high-fiber bread and pasta. Cereal Foods World 42: 94-99.
  36. Tong LT, Zhong K, Liu L, Zhou X, Qiu J, Zhou S. 2015. Effects of dietary hull-less barley ${\beta}$-glucan on the cholesterol metabolism of hypercholesterolemic hamsters. Food Chem 169: 344-349. https://doi.org/10.1016/j.foodchem.2014.07.157
  37. Arafa HM. 2005. Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Monit 11: 228-234.
  38. Kang JK, Kang HY, Seo JH, Kim SO, Choi JH, Cho DY, Park CG, Lee HY. 2009. Effects of fermented turmeric (Curcuma longa) by Bacillus natto supplementation on liver function and serum lipid parameters in mice. J Korean Soc Food Sci Nutr 38: 430-435. https://doi.org/10.3746/jkfn.2009.38.4.430

Cited by

  1. 울금(Curcuma longa L.) 추출물의 산화억제 및 질소산화물 소거활성 vol.36, pp.1, 2019, https://doi.org/10.12925/jkocs.2019.36.1.13