DOI QR코드

DOI QR Code

지역사회건강조사 지표를 이용한 고지혈증 유병율의 지역 간 변이와 위험 요인의 융복합적 분석

Convergence analysis for geographic variations and risk factors in the prevalence of hyperlipidemia using measures of Korean Community Health Survey

  • Kim, Yoo-Mi (Dept. of Health Policy and Management, Sangji University) ;
  • Kang, Sung-Hong (Dept. of Health Policy and Management, Inje University)
  • 투고 : 2015.06.13
  • 심사 : 2015.08.20
  • 발행 : 2015.08.28

초록

본 연구는 고지혈증 유병률의 지역 간 변이 정도와 위험 요인을 규명하여 지역별 특성에 맞는 고지혈증 관리 사업을 지원하기 위한 기초자료를 제공하기 위해 수행되었다. 이를 위해 질병관리본부의 2012년도 시군구 지역사회건강조사 249건의 자료를 이용하여 단순 상관관계 분석, 단계적 회귀분석, 의사결정나무 등의 기법으로 분석하였다. 249개 시군구 지역의 고지혈증 유병률은 9.2%였고, 변동계수는 28.3%였다. 남동부 해안지역에 비해 수도권과 내륙지방의 고지혈증 유병률이 높았다. 의사결정나무 모형이 회귀모형에 비해 예측력이 좋았는데, 지역의 임금근로자 비율, 스트레스 인지율, 고혈압, 협심증, 관절염 유병률이 높은 지역일수록 고지혈증 유병률이 높은 것으로 나타났다. 따라서 사회 역학적 관점에서 지역사회의 개입이 가능한 지점을 중심으로 고지혈증 유병률을 감소시키기 위한 전략 마련이 필요하다.

We investigate how the regional prevalence of hyperlipidemia is affected by health-related and socioeconomic factors with a special emphasis on geographic variations. We focus on the likelihood of hyperlipidemia as function of various region-specific attributes. We analysis a data set at the level of 249 small administrative districts collected from 2012 Korean Community Health Survey by Korea Centers for Disease Control and Prevention. To estimate, we use several methods including correlation analysis, multiple regression and decision tree model. We find that the average prevalence of hyperlipidemia in 249 small districts is 9.6% and its coefficient of variation is 28.3%. Prevalence of hyperlipidemia in continental and capital regions is higher than in southeast coastal regions. Further findings using decision tree model suggest that variations of hyperlipidemia prevalence between regions is more likely to be associated with rate of employee, level of stress, prevalence of hypertension, angina pectoris, and osteoarthritis in their regions.

키워드

참고문헌

  1. World Health Organization, Global status report on noncommunicable diseases 2010. Geneva: World Health Organization, 2011.
  2. C. D. Mathers, D. Loncar, Projections of global mortality and burden of disease from 2002 to 2030, PLoS Med, Vol. 3, No. 11, e442, 2006. https://doi.org/10.1371/journal.pmed.0030442
  3. Statistics Korea, Anual report of the causes of death statistics, Daejeon: Ministry of Statistics, 2014. (Korean)
  4. World Health Organization, Cardiovascular diseases(CVDs) fact sheet $N^{\circ}317$, http://www.who.int/mediacentre/factsheets/fs317/en/, February 1, 2015.
  5. R. H. Nelson, Hyperlipidemia as a risk factor for cardiovascular disease, Prim Care, Vol. 40, No. 1, pp. 195-211, 2013. https://doi.org/10.1016/j.pop.2012.11.003
  6. Ministry of Health and Welfare, Korea Centers for Disease Control, Korea health statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3), Seoul: Ministry of Health and Welfare, 2013a. (Korean)
  7. R. Ferrari, I. Ford, N. Greenlaw, J. C. Tardif, M. Tendera, H. Abergel, K. Fox, D. Hu, S. Shalnova, P. G. Steg, Geographical variations in the prevalence and management of cardiovascular risk factors in outpatients with CAD: data from the contemporary CLARIFY registry, Eur J Prev Cardiol., 2014. [Epub ahead of print]
  8. OECD, Geographic variations in health care: What do we know and what can be done to improve health system performance? OECD Health Policy Studies, OECD Publishing, 2014.
  9. Korean Society of Lipidology and Atherosclerosis, Treatment guidelines for dyslipidemia, Seoul: Korean Society of Lipidology and Atherosclerosis, 2009. (Korean)
  10. L. F. Berkman, I. Kawachi, M. M. Glymour, eds., Social Epidemiology, Second edition, New York, NY: Oxford University Press, 2014.
  11. Ministry of Health and Welfare, Korea Centers for Disease Control, Korean Community Health Statistics at a glance 2008-2012, Osong: Korea Centers for Disease Control, 2013. (Korean)
  12. Y. Liu, G. Salvendy, Visualization support to better comprehend and improve decision tree classification modelling process: A survey and appraisal, Theoretical Issues in Ergonomics Science, Vol. 8, No. 1, pp. 63-92, 2007. https://doi.org/10.1080/14639220500284371
  13. Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults, Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), JAMA, Vol. 285, pp. 2486-97, 2001. https://doi.org/10.1001/jama.285.19.2486
  14. R. Alan, Hyperlipidemia, NYU Langone Medical Center, 2014 EBSCO Publishing. http://www.med.nyu.edu/content?ChunkIID=11767, December 15, 2014.
  15. Medscape, Hypertriglyceridemia, http://www.medscape.com/, December 14, 2014.
  16. M. Marmot, M. J. Shipley, Do socioeconomic differences in mortality persist after retirement? 25 year follow up of civil servants from the first Whitehall study, BMJ, Vol. 313, pp. 1177-80, 1996. https://doi.org/10.1136/bmj.313.7066.1177
  17. N. Yoshimura, S. Muraki, H. Oka, S. Tanaka, H. Kawaguchi, K. Nakamura, et al., Mutual associations among musculoskeletal diseases and metabolic syndrome components: A 3-year follow-up of the ROAD study, Mod Rheumatol, Vol. 20, pp. 1-11, 2014. [Epub ahead of print]
  18. I. Navarro-Millan, S. Yang, S. L. DuVall, L. Chen, J. Baddley, G. W. Cannon, et al., Association of hyperlipidaemia, inflammation and serological status and coronary heart disease among patients with rheumatoid arthritis: data from the National Veterans Health Administration, Ann Rheum Dis, 2015. [Epub ahead of print]
  19. Y. K. Sung, S. K. Cho, C. B. Choi, S. Y. Park, J. Shim, J. K. Ahn, et al., Korean Observational Study Network for Arthritis (KORONA): establishment of a prospective multicenter cohort for rheumatoid arthritis in South Korea. Semin Arthritis Rheum, Vol. 41, No. 6, pp. 745-51, 2012. https://doi.org/10.1016/j.semarthrit.2011.09.007
  20. M. Marmot, Multilevel Approaches to Understanding Social Determinants. In Social Epidemiology, Edited by Berkman and Kawachi: Oxford University Press, 2000.
  21. B. Whalley, D. R. Thompson, R. S. Taylor, Psychological interventions for coronary heart disease: cochrane systematic review and meta-analysis. Int J Behav Med, Vol. 21, No. 1, pp. 109-21, 2014. https://doi.org/10.1007/s12529-012-9282-x
  22. Ministry of Labor, Community education mannual of cerebral and cardiovascualr disease prevention, Seoul: Minstry of Labor, 2009. (Korean)
  23. G. Kwon, D. Lim, E. Park, J. Jung, K. Kang, Y. Kim, H. Kim, S. Cho, Assessment of applicability of standardized rates for health state comparision among areas: 2008 community health survey, J of Perventive Medicine and Public Health, Vol. 43, No. 2, pp. 174-184, 2010. (Korean)