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Introduction

Antimicrobial peptides (AMPs) are multifunctional

molecules produced by not only specific cells but also many

tissues of animals, plants, and invertebrates. They consist

of diverse amino acids and are generally characterized by

their size, sequence, net charge, structure, hydrophobicity,

and amphipathicity [4]. Briefly, AMPs have approximately

12 to 50 amino acids and secondary structures like α-helix,

β-sheet, or relaxed coils. Cationic antimicrobial peptides

(CAPs) possess abundant positively charged amino acids,

such as arginine (R) and lysine (K). The cationicity is

specifically involved in the antibacterial activity, because

the attraction between CAPs and the negatively charged

head group of some phospholipids in the bacterial outer

membrane, such as phosphatidylglycerol (PG) and

cardiolipin, or lipopolysaccharide (LPS), and teichoic acid,

is the first step for exerting antibacterial activity, followed by

the interaction, insertion, and the membrane perturbation

[46]. The hydrophobicity, relating to specific hydrophobic

amino acids like tryptophan (W) or phenylalanine (F), is

another significant factor, in terms of the affinity of water-

soluble AMPs with target membrane lipid bilayer [4],

which results in the antimicrobial effect. The hydrophobic

region, such as hydrophobic terminus or hydrophobic

amino acids, is also related to the self-association, forming

α-helical bundles of AMPs [47]. It can additionally contribute

to the toxicity of AMPs towards host cells. Therefore,

designing cell-selective potent analogue peptides with

reduced toxicity is a significant issue in peptide engineering

study [23]. Owing to their unique properties, AMPs can be

regarded as a novel pharmaceutical candidate for treating the

diseases caused by pathogenic bacterial and fungal species,

antibiotic-resistant microbial species, and even cancers.

AMPs Possessing Membrane-Active Mechanism

As is well known, AMPs exert their activity on microbial

membrane or intracellular compartments. Specifically,

membrane-disruptive peptides have been focused on

thoroughly because of their direct potent activity against

microbial plasma membranes. In the following subsections, we
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Antimicrobial peptides (AMPs) are one of the critical components in host innate immune

responses to imbalanced and invading microbial pathogens. Although the antimicrobial

activity and mechanism of action have been thoroughly investigated for decades, the exact

biological properties of AMPs are still elusive. Most AMPs generally exert the antimicrobial

effect by targeting the microbial membrane, such as barrel stave, toroidal, and carpet

mechanisms. Thus, the mode of action in model membranes and the discrimination of AMPs

to discrepant lipid compositions between mammalian cells and microbial pathogens (cell

selectivity) have been studied intensively. However, the latest reports suggest that not only

AMPs recently isolated but also well-known membrane-disruptive AMPs play a role in

intracellular killing, such as apoptosis induction. In this mini-review, we will review some

representative AMPs and their antimicrobial mechanisms and provide new insights into the

dual mechanism of AMPs.
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briefly review some key membrane-active AMPs (Table 1).

Defensins and Cathelicidins

In mammals, the epithelium of the intestine, respiratory

tract, or skin is the first line of defense regarding barrier

function and homeostasis because it directly adjoins an

external environment [11]. Therefore, antimicrobial proteins

derived from epithelial cells (ECs) are thoroughly investigated

in the epithelial cell defense system. Defensins are the most

well-established AMPs, consisting of 30-40 amino acids

containing six cysteine residues [12, 31]. They consist of

two major groups, α-defensins and β-defensins. 

α-Defensins are highly expressed in the small intestine.

HD5 (DEFA5) and HD6 (DEFA6) peptides in humans are

representative α-defensins [39]. Cryptdins are murine α-

defensins [39]. α-Defensins are small peptides containing

conserved amphipathic structures with positively charged/

hydrophobic residues [52]. This structural feature allows

these peptides to bind with negatively charged cell

surfaces of invading pathogens and to be inserted into the

membrane [52].

β-Defensins are secreted from the epithelium of the skin

(keratinocytes), respiratory tract (respiratory ECs), and large

intestine (mainly enterocytes) [11]. This group of AMPs also

exerts antimicrobial activity through selective microbial

membrane permeabilization [45]. Cathelicidins (e.g., LL37

in humans and CRAMP in mice) are abundant in resident

mast cells of the skin and also exist in ECs of the lung,

urinary tract, and large intestine [2]. They are generally

cationic α-helical peptides and these properties contribute

to the binding affinity between cathelicidins and negatively

charged phospholipids of bacteria [2].

Paneth cells are specialized secretory cells residing at the

base of small intestinal crypts [41]. For intestinal homeostasis,

they produce the antimicrobial proteins against enteric

pathogens, such as α-defensins (cryptdins in mice),  cryptdin-

related sequence (CRS) peptide, regenerating islet-derived

protein (Reg) family of C-type lectins, and lysozymes [5, 7,

38]. HIP/PAP, hepatointestinal pancreatic/pancreatitis-

associated protein (Reg3α) in humans and Reg 3β and

Reg3γ in mice are representatives of the Reg family [38].

They have carbohydrate recognition domains selectively

recognizing peptidoglycan of the gram-positive bacterial

cell wall [30]. They are not membrane-disruptive AMPs.

However, they play critical roles by interacting with the

cell surface of bacteria.

Melittin

Melittin is the most distinguished lytic peptide, which is

the main component of bee venom (40-50%) isolated from

honey bee Apis mellifera [13]. This α-helical peptide is

hydrophobic and possesses a high positive net charge of +6

[9]. It is generally used for membrane studies as a control

peptide, as it exhibits definite disruption of the lipid

membrane. Briefly, melittin binds to lipid membranes and

forms a α-helical structure with both parallel and perpendicular

positions. The perpendicular position is thought to be

involved in pore formation [14, 16, 28, 33, 49, 50].

Characteristically, melittin as a monomer, over 1 µg/ml,

can bind to membrane lipids of erythrocytes, resulting in

hemoglobin release within a few seconds [15]. Therefore,

the design of analogs with lower cytotoxicity is important in

melittin studies. Many studies focused on the leucine

zipper motif contributing to the toxicity towards mammalian

cells and simultaneous nonselective activity [40, 53].

Cecropin

Cecropins were the first insect AMPs isolated from a

giant silk moth, Hyalophora cecropia [17]. This peptide is

cationic and adopts α-helical structures in the hydrophobic

Table 1. AMPs and their antimicrobial mechanisms.

Name Origin Mechanism References

Membrane-active 

AMPs

Melittin Apis mellifera Toroidal pore/carpet [14, 16, 28, 

33, 49, 50]

Cecropin Hyalophora cecropia Channel formation [8]

Magainin Xenopus laevis Toroidal pore [34, 35]

Apoptosis-inducing 

AMPs

Coprisin Copris tripartitus 1) No effects on C. albicans membranes

2) Hydroxyl radical generation and mitochondrial dysfunction

in C. albicans

[26]

Papiliocin Papilio xuthus ROS generation and mitochondrial dysfunction in C. albicans [18]

Melittin Apis mellifera ROS generation and mitochondrial dysfunction in C. albicans [24, 42]

Magainin 2 Xenopus laevis RecA activation in E. coli [29]
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condition. Cecropins display a broad spectrum of antibacterial

activity against gram-negative and gram-positive bacterial

strains, and originate from the amidated C-terminus

conferring to the interaction between membranes and these

peptides [32, 37]. Christensen et al. [8] demonstrated in

detail that cecropins interacted with the lipid bilayer with

electrostatic adsorption, followed by the insertion of the

hydrophobic C-terminus in contrast with residual amphipathic

helix in the interface. Moreover, cecropin showed channel

formation in membranes in a voltage-dependent manner

[8]. In mammals, cecropin P1 derived from the porcine

small intestine has similarity in amino acids with insect

cecropins [27]. Cecropins are also used as a reference peptide,

like melittin, in membrane studies and antimicrobial

mechanism studies of peptides and proteins. As is well-

documented, cecropin A/melittin (CAME) hybrid peptides

are established analog AMPs showing advanced antimicrobial

effects [3, 36].

Magainin

In 1987, Zasloff [51] designated the magainin peptides

(magainin 1 and magainin 2), which originated from the skin

of Xenopus laevis, an African clawed frog [51]. Interestingly,

he suggested these AMPs could be expressed in not only

eosinophilic and granule-laden intestinal cells, like mammalian

Paneth cells, of Xenopus small intestine, but also the skin

[43]. This site specificity suggested that magainins play

a conserved role in the host defense system in both

mammalians and non-mammalian vertebrates [43, 51].

These two 23 mer peptides have an α-helical structure and

a net positive charge of +4 [51]. They also showed remarkable

antibiotic activity against a broad spectrum of bacteria,

fungi, and protozoa [51]. Magainins have been thoroughly

investigated regarding their biological properties and their

notable features. They show high cell selectivity between

pathogens and mammalian cells at the concentrations

exhibiting antimicrobial activities, which allowed them to

be employed as a template for the design of novel analog

peptides [6, 35, 51]. In terms of the mechanism of action,

magainins bind to acidic lipid compositions through

electrostatic interactions and permeabilize the cell plasma

membrane by forming pores [34, 35]. The analog of cecropin

A/magainin 2 (CAMA) hybrid peptide, an antibacterial

peptide [48], is still being investigated for its clinical

potential in microbial diseases in humans [44].

AMPs Possessing Apoptosis-Inducing Mechanism

In this part, we introduce some AMPs containing the

apoptosis-inducing mechanism. Additionally, the established

membrane-active AMPs showing a dual mechanism are

reviewed (Table 1).

Coprisin

Coprisin (VTCDVLSFEAKGIAVNHSACALHCIALRKK

GGSCQNGVCVCRN-NH2) is a defensin-like 43 mer peptide

containing three disulfide bonds (positions: 3-34, 20-39,

and 24-41), which was isolated from the dung beetle, Copris

tripartitus, in 2009 [19]. Coprisin exhibited broad-spectrum

antifungal activities against various fungal pathogens, such

as Aspergillus and Candida species, without any cytotoxicity

towards human erythrocytes [26]. Interestingly, several

membrane studies, such as 1,6-diphenyl-1,3,5-hexatriene

(DPH) fluorescence analysis, calcein leakage measurement

from large unilamellar vesicles (LUVs), and rhodamine-

conjugated single giant unilamellar vesicle (GUV) analysis,

suggested that coprisin did not disrupt both the cell plasma

membrane of Candida albicans and fungal model membranes

[26]. Notably, in a rhodamine-conjugated single GUV, which

is consisted of phosphatidylchoine (PC)/phosphatidylethanolamine

(PE)/phosphatidylinositol (PI)/ergosterol (5:4:1:2 (w/w/w/w)),

the absence of membrane-active action was well visualized

[26]. Therefore, it was hypothesized that coprisin exerted

its activity after the cell penetration. Based on the hypothesis,

some apoptosis markers, such as phosphatidylserine (PS)

exposure for early apoptosis, and DNA fragmentation for

late apoptosis, were examined. The results showed that

corpisin significantly induced apoptosis in C. albicans [26].

Furthermore, reactive oxygen species (ROS), specifically

hydroxyl radicals (•OH), are suggested as key players in

coprisin-induced apoptosis [26]. Coprisin additionally caused

mitochondrial dysfunction and cytochrome c release/caspase

activation as downstream events [26]. In addition, in terms

of antibacterial activity, coprisin, which possesses an

amphipathic α-helix (A19 to R28) and a electropositive

surface formed by R28, K29, K30, and R42, showed potent

activity by targeting bacterial LPS [22]. However, the antifungal

study of coprisin provided new insight regarding the

mechanism of AMPs.

Papiliocin

In 2010, a novel cecropin-like AMP was isolated by Kim

et al. [21] and named papiliocin. Papiliocin (RWKIFKKIE

KVGRNVRDGIIKAGPAVAVVGQAATVVK-NH2) is a

37 mer peptide isolated from the swallowtail butterfly,

Papilio xuthus [21]. It exhibited potent antimicrobial activities

against both gram-positive and negative bacteria, and

fungi, without cytotoxicity against human erythrocytes
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[21]. The first mechanism study of paliliocin showed that

papiliocin effectively disrupted the fungal plasma membrane

of C. albicans [25]. In model membranes mimicking the

outer leaflets of the C. albicans plasma membrane, papiliocin

formed pores on the membrane within minutes [25]. The

secondary structure, and antibacterial and anti-inflammatory

properties of papiliocin were further investigated [20]. Kim

et al. [20] suggested that papiliocin contained two α-helices

(K3 to K21 and A25 to V36) with the hinge region [20].

The novel antimicrobial mechanism of papiliocin was

proposed in succession [18]. The results showed that

papiliocin caused apoptotic events, such as PS flip-flop,

chromatin condensation, and DNA fragmentation in

C. albicans [18]. It was also suggested that ROS accumulation

and mitochondrial membrane damage could be the key in

papiliocin-induced fungal apoptosis [18]. Unlike coprisin,

papiliocin peptide showed a dual mechanism, membrane-

active action, and apoptosis induction, specifically in fungal

pathogens [18, 25]. The exact demonstration of the coexistence

between two discrepant mechanisms is still largely unknown.

However, it will enable more effective clinical approaches

in treating human fungal disease.

Melittin

As noted previously, melittin is widely known as a

membrane-active AMP. However, a novel antimicrobial

mechanism of melittin has been suggested [24]. In 2010, the

potential of melittin in C. albicans was suggested for the

first time by using some hallmarks of apoptosis, such as

Annexin V, DAPI, and TUNEL staining [42]. However, the

in-depth mechanism was still elusive. In 2014, the

intracellular mechanism of melittin-induced apoptosis in

C. albicans was further characterized [24]. Melittin caused

ROS generation to play a pivotal role in the apoptosis

induction, and specifically •OH is significantly involved

[24]. The results also suggested the mitochondrial dysfunction

and the caspase activation induced by melittin and further

indicated the role of mitochondria by investigating Ca2+

homeostasis between the ER and mitochondria [24]. In the

study, mitochondrial Ca2+ levels were highly increased,

suggesting the mitochondrial perturbation or rupture by

the decreased mitochondrial membrane potential (∆Ψ
m
) [24].

In summary, it was suggested that melittin also possessed a

dual antifungal mechanism.

Magainin 2

As discussed previously, magainin 2 is a pore-forming

AMP [34, 35]. It was recently proposed that magainin 2

caused bacterial cell death in Escherichia coli, like eukaryotic

apoptosis [29]. Magainin 2 showed the apoptotic phenotype

in a caspase-dependent manner, after membrane disruption

[29]. Furthermore, RecA protein, which is essential for

DNA repair in bacterial SOS responses [10], was suggested

as a key player in magainin 2-induced bacterial cell death

[29]. The result suggested that RecA was involved in the

cleavage of LexA protein, which regulates SOS response in

the damaged bacteria [1, 29], and that RecA also acted as a

caspase substrate in this apoptosis-like death [29]. It

suggests that membrane-active peptides can successively

exert the antimicrobial activity.

In conclusion, we have reviewed several membrane-

active AMPs and comparatively novel AMPs showing

apoptosis-inducing ability (Fig. 1). As noted, AMPs are still

the most potent candidates as alternatives of conventional

antibiotics. Ongoing studies, in terms of understanding

the diverse mechanism of AMP, will contribute to the

development of more potent AMPs without unexpected

side effects.
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