Abstract
Recently, parallel processing methods with accelerator have been introduced into a high performance computing and a mobile computing. The photomosaic application can be parallelized by using inherent data parallelism and accelerator. In this paper, we propose a way to distribute the workload of the photomosaic application into a CPU and GPU heterogeneous computing environment. That is, the photomosaic application is parallelized using both CPU and GPU resource with the asynchronous mode of OpenCL, and then the optimal workload distribution rate is estimated by measuring the execution time with CPU-only and GPU-only distribution rates. The proposed approach is simple but very effective, and can be applied to parallelize other applications on a CPU and GPU heterogeneous computing environment. Based on the experimental results, we confirm that the performance is improved by 141% into a heterogeneous computing environment with the optimal workload distribution compared with using GPU-only method.
최근 고성능 컴퓨팅과 모바일 컴퓨팅에서 성능가속기를 사용하는 병렬처리 방법들이 소개되어왔다. 포토모자이크 응용은 내재된 데이터 병렬성을 활용하고 성능가속기를 사용하여 병렬처리가 가능하다. 본 논문에서는 CPU와 GPU로 구성된 이기종 컴퓨팅 환경에서 포토모자이크 수행 시 작업부하 분배 방법을 제안한다. 즉, 포토모자이크 응용을 비동기 방식으로 병렬화하여 CPU와 GPU 자원을 동시에 활용하고, 각 처리기에 할당할 최적의 작업부하량을 예측하기 위해 CPU-only와 GPU-only 작업 분배 환경에서 수행시간을 측정한다. 제안 방법은 간단하지만 매우 효과적이고, CPU와 GPU로 구성된 이기종 컴퓨팅 환경에서 다른 응용을 병렬화하 데에도 적용될 수 있다. 실험 결과, 이기종 컴퓨팅 환경에서 최적의 작업 분배량으로 수행한 경우, GPU-only의 방법과 비교하여 141%의 성능이 개선되었음을 확인한다.