참고문헌
- AISC-LRFD (1995), Manual of steel construction: Load and resistance factor design; American Institute of Steel Construction, Chicago, IL, USA.
- Aydogdu, I. (2010), "Optimum design of 3-d irregular steel frames using ant colony optimization and harmony search algorithms", Ph.D. Dissertation; Middle East Technical University, Ankara, Turkey.
- Aydogdu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029
- Carbas, S., Aydogdu, I. and Saka, M.P. (2013), "A comparative study of three metaheuristics for optimum design of engineering structures", Proceedings of the 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, USA, May.
- Daloglu, A. and Aydin, Z. (1999), "Optimum design of trusses for practical applications", Pamukkale University Engineering College J. Eng. Sci., 5(1), 951-957.
- Dede, T. (2013), "Optimum design of grillage structures to LRFD-AISC with teaching-learning based optimization", Struct. Multidisc. Optim., 48(5), 955-964. https://doi.org/10.1007/s00158-013-0936-3
- Dede, T. (2014), "Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures", Ksce. J. Civil Eng., 18(6), 1759-1767. https://doi.org/10.1007/s12205-014-0553-8
- Dede, T. and Ayvaz, Y. (2013), "Structural optimization with teaching-learning-based optimization algorithm", Struct. Eng. Mech., Int. J., 47(4), 495-511. https://doi.org/10.12989/sem.2013.47.4.495
- Degertekin, S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames", Struct. Multidisc. Optim., 34(4), 347-359. https://doi.org/10.1007/s00158-007-0096-4
- Degertekin, S.O. (2012), "Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm", Steel Compos. Struct., Int. J., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505
- Degertekin, S.O. and Hayalioglu, M.S. (2009), "Optimum design of steel space frames: Tabu search vs. simulated annealing and genetic algorithms", Int. J. Eng. Appl. Sci. (IJEAS), 1(2), 34-45.
- Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J. AISC, 29(3), 111-115.
- Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H. (2000), "Optimal design of planar and space structures with genetic algorithms", Comput. Struct., 75(2), 209-224. https://doi.org/10.1016/S0045-7949(99)00084-X
- Esen, Y. and Ulker, M. (2008), "Optimization of multi storey space steel frames, materially and geometrically properties non-linear", J. Fac. Eng. Arch. Gazi Univ., 23(2), 485-494.
- Gero, M.B.P., Garcia, A.B. and Diaz, J.J.D.C. (2006), "Design optimization of 3D steel structures: Genetic algorithms vs. classical techniques", J. Constr. Steel Res., 62(12), 1303-1309. https://doi.org/10.1016/j.jcsr.2006.02.005
- Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, USA.
- Isenberg, J., Pereyra, V. and Lawver, D. (2002), "Optimal design of steel frame structures", Appl. Numer. Math., 40(1-2), 59-71. https://doi.org/10.1016/S0168-9274(01)00058-7
- Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., Int. J., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323
- Hasancebi, O., Bahcecioglu, T., Kurc, O. and Saka, M.P. (2011), "Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm", Comput. Struct., 89(21-22), 2037-2051. https://doi.org/10.1016/j.compstruc.2011.05.019
- Hussein, G. and Taysi, N. (2013), "Genetic algorithm optimization of space frame", Proceedings of the 2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, Epoka University, Tirana, Albania, May.
- Kaveh, A. and Talatahari, S. (2007), "A discrete particle swarm ant colony optimization for design of steel frames", Asian Journal of Civil Engineering (Building and Housing), 9(6), 563-575.
- Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., Int. J., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
- MATLAB (2009), The Language of Technical Computing; The Mathworks, Natick, MA, USA.
- Martini, K. (2011), "Harmony search method for multimodal size, shape, and topology optimization of structural frameworks", J. Struct. Eng. ASCE, 137(11), 1332-1339. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000378
- Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method", Steel Compos. Struct., Int. J., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Rosca, V.E., Axinte, E. and Teleman, C.E. (2012), "Practical optimization of composite steel and concrete girders", Buletinul Institutului Politehnic Din Iasi, 85-98.
- Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm" J. Constr. Steel Res., 65(1), 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
- Salmon, C.G. and Johnson, J.E. (1980), Steel Structures: Design and Behavior, Harper & Row, New York, NY, USA.
- Sergeyev, O. and Mroz, Z. (2000), "Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints", Comput. Struct., 75(2), 167-185. https://doi.org/10.1016/S0045-7949(99)00088-7
- Tong, W.H. and Liu, G.R. (2001), "An optimization procedure for truss structures with discrete design variables and dynamic constraints", Comput. Struct., 79(2), 155-162. https://doi.org/10.1016/S0045-7949(00)00124-3
- Togan, V. and Daloglu, A.T. (2006), "Optimization of 3d trusses with adaptive approach in genetic algorithms", Eng. Struct., 28(7), 1019-1027. https://doi.org/10.1016/j.engstruct.2005.11.007
피인용 문헌
- A comparative study on optimum design of multi-element truss structures vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.521
- Optimum design of braced steel frames via teaching learning based optimization vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.733
- Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
- Optimum design of steel space structures using social spider optimization algorithm with spider jump technique vol.62, pp.3, 2015, https://doi.org/10.12989/sem.2017.62.3.259
- Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics vol.24, pp.1, 2015, https://doi.org/10.12989/scs.2017.24.1.093
- Optimization of long span portal frames using spatially distributed surrogates vol.24, pp.2, 2015, https://doi.org/10.12989/scs.2017.24.2.227
- Design of lightweight mansard portal frames vol.24, pp.3, 2015, https://doi.org/10.12989/scs.2017.24.3.277
- A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms vol.66, pp.2, 2015, https://doi.org/10.12989/sem.2018.66.2.173
- Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2015, https://doi.org/10.12989/sem.2019.70.2.221
- Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm vol.33, pp.5, 2015, https://doi.org/10.12989/scs.2019.33.5.747
- A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
- Hybrid tabu search algorithm for weight optimization of planar steel frames vol.53, pp.8, 2021, https://doi.org/10.1080/0305215x.2020.1793977
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795