DOI QR코드

DOI QR Code

Pretreatment of Sugarcane Molasses and Citric Acid Production by Candida zeylanoides

사탕수수당밀의 전처리법과 Candida zeylanoides에 의한 시트르산의 생산

  • Kim, Kee Hyuk (Department of Culinary Arts, WooSong University) ;
  • Lee, Ho-Young (Department of Biochemistry, University of Washington) ;
  • Lee, Chan Yong (Department of Microbiology and Biotechnology, DaeJeon University)
  • 김기혁 (우송대학교 외식조리학부) ;
  • 이호영 (워싱턴주립대학교 생화학과) ;
  • 이찬용 (대전대학교 생명과학부)
  • Received : 2015.03.26
  • Accepted : 2015.05.22
  • Published : 2015.06.28

Abstract

Citric acid is produced via submerged fermentation using yeasts. Among eight different strains of yeast, Candida zeylanoides was chosen as the strain for producing citric acid and optimized for various C/N ratios and effects of phosphate or Fe2+ ions in a clean carbon source medium (glucose: fructose, 1:1). The yield of citric acid was maximized at a C/N ratio of 40/1, a phosphate addition of 1.0 g/l, and an Fe2+ ion concentration of less than 50 mg/l, yielding up to 91 g/L in the broth with 18.5 g/l of isocitric acid in a six-day fermentation period using a pre-treated molasses medium. The yield of batch culture was 0.51 (Yp/s, g/g) in a 5 L-Jar fermenter.

효모의 액침배양법에 의한 구연산을 발효생산하였다. 여덟 가지 구연산 발효균주의 생산성을 비교하여 가장 생산성이 높은 Candida zeylanoides를 선발하였다. 발효조건의 최적화를 위하여 glucose와 fructose 혼합당 배지에서 C/N 비, 인산염의 농도, Fe2+ 이온의 최적 농도를 결정하였다. 삼각 플라스크 실험결과 C/N 비는 40/1이 가장 좋았으며, 최적화된 인삼염과 Fe2+ 농도에서 구연산 91.4 g/l와 이소-구연산 19.8 g/l를 생성하였다. 이 결과를 토대로 TCPH 전처리 당밀 배지를 사용한 실험에서는 인삼염 농도 1.0 g/l, Fe2+ 이온 50 mg/l 이하의 농도에서 구연산 91 g/l와 이소-구연산 18.5 g/l를 생성하였다. 5 L-Jar 발효조를 사용한 실험에서의 구연산 수율(Yp/s, g/g)은 0.51이었다.

Keywords

References

  1. Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H. 1973. Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agric. Biol. Chem. 37: 879-884. https://doi.org/10.1271/bbb1961.37.879
  2. Crolla A, Kennedy KJ. 2001. Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J. Biotechnol. 89: 27-40. https://doi.org/10.1016/S0168-1656(01)00278-4
  3. Crueger W, Crueger A. 1989. Organic acids(Ch. 8). pp. 134-142. In: Biotechnology.
  4. Ermakova IT, Shishkanova NV, Melnikova OF, Finogenova TV. 1986. Properties of Candida lipolytica mutants with the modified glyoxylate cycle and their ability to produce citric acid and isocitric acid. Appl. Microbiol. Biotechnol. 23: 372-377.
  5. Haq I, Sikander A, Qadeer MA, Javed I. 2004. Citric acid production by selected mutant of Aspergillus niger from cane molasses. Bioresource Technol. 93: 125-130. https://doi.org/10.1016/j.biortech.2003.10.018
  6. Hossain M, Brooks JD, Maddox IS. 1985. Galactose inhibition of citric acid production from glucose by Aspergillus niger. Appl. Microbiol. Biotechnol. 22: 98-102.
  7. Kubicek CP, Rohr M. 1986. Citric acid fermentation. CRC Crit. Rev. Biotechnol. 3: 331-373.
  8. Liu X, Lv J, Zhang T, Deng Y. 2015. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation. Preparative Biochem. Biotechnol. 45: 825-835. https://doi.org/10.1080/10826068.2014.979203
  9. Majumder L, Khalil I, Munshi MK, Alam K, Rashid HO, Begum R, et al. 2010. Citric acid production by Aspergillus niger using molasses and pumpkin as substrate. Eur. J. Biological Sci. 2: 1-08.
  10. Marier JR, Boulet M. 1958. Direct determination of citric acid in milk with an improved pyridine acetic anhydride method. J. Dairy Sci. 41: 1683-1692. https://doi.org/10.3168/jds.S0022-0302(58)91152-4
  11. Milsom PE, Meers JL. 1985. Citric acid. 3 pp 665-680. In: Comprehensive Biotechnology Moo-young M(ed).
  12. Mourya S, Jauhri KS. 2000. Production of citric acid from starch-hydrolysate by Aspergillus niger. Microbiol. Res. 155: 37-44. https://doi.org/10.1016/S0944-5013(00)80020-8
  13. Nehad ZA. 2002. Attempts at improving citric acid fermentation by Aspergillus niger in beet-molasses medium. Bioresource Technol. 84: 97-100. https://doi.org/10.1016/S0960-8524(02)00007-X
  14. Okoshi H, Sato S, Mukataka S, Takahashi J. 1987. Citric acid production by Candida tropicalis under high dissolved oxygen concentrations. Agric. Biol. Chem. 51: 257-258. https://doi.org/10.1271/bbb1961.51.257
  15. Rane KD, Sims KA. 1993. Production of citric acid by Candida lipolytica Y-1095: effect of glucose concentration on yield and productivity. Enzyme Microbiol. Technol. 15: 646-651. https://doi.org/10.1016/0141-0229(93)90063-8
  16. Rohr M, Kubicek CP, Kominek J. 1983. Citric acid. in Biotechnology ed. by Rehm HJ and Reed G, 3: 419-460.
  17. Soccol RC, Vandenberghe LPS, Rodrigues C, Pandey A. 2006. New perspectives for citric acid production and application. Food Technol. Biotechnol. 44: 141-149.
  18. Shah ND, Chattoo BB, Kothari RM, Hegde VM. 1993. Starch hydrolysate, an optimal and economical source of carbon for the secretion of citric acid by Yarrow lipolytica. Starch 45: 104-109. https://doi.org/10.1002/star.19930450308
  19. Tani Y, Sakai Y, Chou S-G. 1990. Production of citric acid from methanol by a flouroacetate-resistant mutant of Candida sp.Y-1. Appl. Microbiol. Biotechnol. 34: 5-9.
  20. Walid AL, Khaled MG, Ehab EH. 2007. Citric acid production by a novel Aspergillus niger isolate: I. Mutagenesis and cost reduction studies. Bioresource Technol. 94: 3464-3469.
  21. Umar F, Faqir MA, Tahir Z, Sajjad UR, Zafar H, Kashif A, et al. 2013. Citric acid production from sugarcane molasses by Aspergillus niger under different fermentation conditions and substrate levels. Int. J. Agric. Appl. Sci. 5: 8-16.
  22. Yalcin SK. 2012. Enhancing citric acid production of Yarrowia lipolytica by mutagenesis and using natural media containing carrot juice and celery byproducts. Food Sci. Biotechnol. 21: 867-874. https://doi.org/10.1007/s10068-012-0112-3
  23. Yalcin SK, Bozdemir MT, Ozbas ZY. 2010. Citric acid production by yeasts: Fermentation conditions, process optimization and strain improvement. Cur. Res. Technol. Education Topics in Applied Microbiol. Microbial Biotechnol. 1374-1382.

Cited by

  1. Effect of Media Composition and Culture Time on the Lipid Profile of the Green Microalga Coelastrum sp. and Its Suitability for Biofuel Production vol.14, pp.1, 2021, https://doi.org/10.1007/s12155-020-10160-5
  2. Citric Acid Production of Yeasts: An Overview vol.5, pp.2, 2015, https://doi.org/10.2478/ebtj-2021-0012