DOI QR코드

DOI QR Code

A Novel Methodology for Extracting Core Technology and Patents by IP Mining

핵심 기술 및 특허 추출을 위한 IP 마이닝에 관한 연구

  • Kim, Hyun Woo (Department of Industrial Management Engineering, Korea University) ;
  • Kim, Jongchan (Department of Industrial Management Engineering, Korea University) ;
  • Lee, Joonhyuck (Department of Industrial Management Engineering, Korea University) ;
  • Park, Sangsung (Graduate School of Management of Technology, Korea University) ;
  • Jang, Dongsik (Department of Industrial Management Engineering, Korea University)
  • 김현우 (고려대학교 산업경영공학과) ;
  • 김종찬 (고려대학교 산업경영공학과) ;
  • 이준혁 (고려대학교 산업경영공학과) ;
  • 박상성 (고려대학교 기술경영전문대학원) ;
  • 장동식 (고려대학교 산업경영공학과)
  • Received : 2015.03.22
  • Accepted : 2015.06.01
  • Published : 2015.08.25

Abstract

Society has been developed through analogue, digital, and smart era. Every technology is going through consistent changes and rapid developments. In this competitive society, R&D strategy establishment is significantly useful and helpful for improving technology competitiveness. A patent document includes technical and legal rights information such as title, abstract, description, claim, and patent classification code. From the patent document, a lot of people can understand and collect legal and technical information. This unique feature of patent can be quantitatively applied for technology analysis. This research paper proposes a methodology for extracting core technology and patents based on quantitative methods. Statistical analysis and social network analysis are applied to IPC codes in order to extract core technologies with active R&D and high centralities. Then, core patents are also extracted by analyzing citation and family information.

최근 사회는 아날로그 시대를 거쳐 디지털, 스마트 시대로 접어들었고, 모든 분야의 기술은 끊임없는 변화와 매우 빠른 발전을 하고 있다. 이러한 경쟁사회에서 지식재산, 특히 특허분석을 통한 R&D 전략 수립은 기술경쟁력 향상에 많은 도움이 될 수 있다. 특허문서는 명칭, 요약, 상세한 설명, 청구항, 기술분류정보 등 서지정보, 기술문헌과 권리문헌으로 이루어져 있어 대중은 이를 통해 해당 기술에 대한 많은 정보를 수집할 수 있다. 특허문서의 특징을 정량적으로 활용하고 기술 분석을 실시함으로써 분석대상 기술의 동향을 파악하는 것뿐만 아니라, 해당 기술 분야의 핵심기술과 특허를 탐색하여 경쟁력을 향상시키는 것이 가능하다. 본 논문은 특허 데이터에 대한 정량적인 방법을 기반으로 한 핵심 기술과 핵심 특허의 도출 방법을 제안한다. 특허문서에 포함되어 있는 기술분류정보, IPC 코드에 통계분석과 사회네트워크분석을 적용하여 연구개발이 활발한 분야와 중심성이 높은 기술을 탐색한다. 그 후 특허의 인용정보와 패밀리정보 분석을 통해 핵심 기술 분야에서 중요성이 높은 특허를 추출하여, 최종적으로 기술경영 및 특허경영 전략 수립 방법을 제안한다.

Keywords

References

  1. Korean Intellectual Property Office, Intellectual Proper ty Statistics - Number of Patent Applications per Year, Available: http://www.kipo.go.kr/kpo/user.tdf?a=user.html.HtmlApp&c=3041&catmenu=m02_05_01, 2015, [Accessed: May 15, 2015]
  2. Sunghae Jun, "A Big Data Learning for Patent Analysis", Journal of Korean Institute of Intelligent Systems, vol. 23, no. 5, pp. 465-411, 2013.
  3. Craig S. Fleisher, Babette E. Bensoussan, Strategic and Competitive Analysis: Methods and Techniques for Analyzing Business Competition, Prentice Hall, 2002.
  4. Sunghae Jun, Sangsung Park, Dongsik Jang. "Technology forecasting using matrix map and patent clustering", Industrial Management & Data Systems vol. 112, no. 5, pp.786-807, 2012. https://doi.org/10.1108/02635571211232352
  5. World Intellectual Property Organization, "Intern ational Patent Classification (Version 2014)", A vailable: http://www.wipo.int/export/sites/www/classifications/ipc/en/guide/guide_ipc.pdf, 2014, [Accessed: May 15, 2015]
  6. Bronwyn H. Hall, Adam Jeffe, Manuel Trajtenberg, "Market Value and Patent Citations: A First Look", University of California, Berkely, Economics Department Working Paper, No. E01-304, 2001.
  7. Catalina Martinez, "Insights into Different Types of Patent Families", OECD Science, Technology and Industry Working Papers, OECD Publishing, 2010.
  8. Myunghoe Huh, Introduction to Social Network Analysis using R, Jayoo Academy, 2012
  9. Christian Sternitzke, Adam Bartkowski, Reinhard Schramm, "Visualizing patent statistics by means of social network analysis tools" World Patent Information vol. 30, no. 2, pp. 115-131, 2008 https://doi.org/10.1016/j.wpi.2007.08.003
  10. Linton Freeman, "A set of measures of centrality based on betweenness", Sociometry, vol. 40, no.1, pp.35-41, 1977 https://doi.org/10.2307/3033543
  11. Ana Gonzalez, Bo Dalsgaard, Jens Olesen, "Centrality measures and the importance of generalist species in pollination networks". Ecological Complexity 7: 36-43
  12. Jiaoe Wang, Mo Huihuim, Fahui Wang, Fengjun Jin, "Exploring the network structure and nodal centrality of China's air transport network: A complex network approach". Journal of Transport Geography vol. 19, no.4 pp.712-721, 2011 https://doi.org/10.1016/j.jtrangeo.2010.08.012
  13. Alireza Abassi, Liaquat Hossain, Loet Leydesdorff, (2012). "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks". Journal of Informetrics vol. 6 pp. 403-412 https://doi.org/10.1016/j.joi.2012.01.002
  14. Carter T. Butts, "Tools for Social Network Analysis", Available: http://cran.r-project.org/web/packages/sna/sna.pdf, 2015, [Accessed: May 15, 2015]
  15. Sunghae Jun, "Central Technology Forecasting Using Social Network Analysis", Communications in Computer and Information Science, vol. 340, pp.1-8, 2012. https://doi.org/10.1007/978-3-642-35267-6_1

Cited by

  1. A Big Data Preprocessing using Statistical Text Mining vol.25, pp.5, 2015, https://doi.org/10.5391/JKIIS.2015.25.5.470
  2. Development of On-In-One Web Solution for Technology Marketing vol.26, pp.2, 2016, https://doi.org/10.5391/JKIIS.2016.26.2.099
  3. A Study on Analysis of R&D Intensity based on Patent Citation Information: Case Study on Self-driving Car of Google vol.26, pp.4, 2016, https://doi.org/10.5391/JKIIS.2016.26.4.327