DOI QR코드

DOI QR Code

Validation of Prediction Equations of Energy Values of a Single Ingredient or Their Combinations in Male Broilers

  • Alvarenga, R.R. (Animal Sciences Department, Federal University of Lavras (UFLA)) ;
  • Rodrigues, P.B. (Animal Sciences Department, Federal University of Lavras (UFLA)) ;
  • Zangeronimo, M.G. (Veterinary Medicine Department, Federal University of Lavras) ;
  • Oliveira, E.C. (Animal Sciences Department, Federal University of Lavras (UFLA)) ;
  • Mariano, F.C.M.Q. (Exact Science Department, Federal University of Lavras) ;
  • Lima, E.M.C. (Animal Sciences Department, Federal University of Lavras (UFLA)) ;
  • Garcia, A.A.P. Jr (Animal Sciences Department, Federal University of Lavras (UFLA)) ;
  • Naves, L.P. (Animal Sciences Department, Federal University of Lavras (UFLA)) ;
  • Nardelli, N.B.S. (Animal Sciences Department, Federal University of Lavras (UFLA))
  • Received : 2014.05.09
  • Accepted : 2014.09.05
  • Published : 2015.09.01

Abstract

A set of prediction equations to estimate the nitrogen-corrected apparent metabolizable energy (AMEn) of individual ingredients and diets used in the poultry feed industry was evaluated. The AMEn values of three energy ingredients (maize, sorghum and defatted maize germ meal), four protein ingredients (soybean meal, maize gluten meal 60% crude protein, integral micronized soy and roasted whole soybean) and four diets (three containing four feedstuffs, complex diets, and one containing only corn-soybean meal, basal diet) were determined using a metabolism assay with male broilers from 1 to 7, 8 to 21, 22 to 35, and 36 to 42 days old. These values were compared to the AMEn values presented in the tables of energy composition or estimated by equation predictions based on chemical composition data of feedstuffs. In general, the equation predictions more precisely estimated the AMEn of feedstuffs when compared to the tables of energy composition. The equation AMEn (dry matter [DM] basis) = 4,164.187+51.006 ether extract (% in DM basis)-197.663 ash-35.689 crude fiber (% in DM basis)-20.593 neutral detergent fiber (% in DM basis) ($R^2=0.75$) was the most applicable for the prediction of the energy values of feedstuffs and diets used in the poultry feed industry.

Keywords

References

  1. AOAC. 1995. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
  2. Alvarenga, R. R., P. B. Rodrigues, M. G. Zangeronimo, R. T. F. Freitas, R. R. Lima, A. G. Bertechini, and E. J. Fassani. 2011. Energetic values of feedstuffs for broilers determined with in vivo assays and prediction equations. Anim. Feed Sci. Technol. 168:257-266. https://doi.org/10.1016/j.anifeedsci.2011.04.092
  3. Alvarenga, R. R., P. B. Rodrigues, M. G. Zangeronimo, L. Makiyama, E. C. Oliveira, R. T. F. Freitas, R. R. Lima, and V. M. P. Bernardino. 2013. Validation of prediction equations to estimate the energy values of feedstuffs for broilers: performance and carcass yield. Asian Australas. J. Anim. Sci. 26:1474-1483. https://doi.org/10.5713/ajas.2013.13136
  4. Anuradha, Y., S. Parminder, and S. S. Sikka. 2013. Relationship between buffering capacity and chemical composition of poultry feedstuffs. J. Kr. Vig. 2:52-54.
  5. Batal, A. and N. Dale. 2012. Feedstuffs: ingredient analysis table: 2009 edition. University of Georgia, Athens, Greece. Available: http://fdsmagissues.feedstuffs.com/fds/Reference_issue_2012/03_Ingredient%20Analysis%20Table%202012%20Edition.pdf. Accessed July 14, 2013.
  6. Carre, B., B. Prevotel, and B. Leclercq. 1984. Cell wall content as a predictor of metabolizable energy value of poultry feedingstuffs. Br. Poult. Sci. 25:561-572. https://doi.org/10.1080/00071668408454898
  7. Chadd, S. A. 2008. Future trends and developments in poultry nutrition. In: Poultry in the 21st Century: Avian Influenza and Beyond. UN Food and Agriculture Organisation (FAO) International Poultry Conference. Bangkok, Thailand.
  8. Cobb 500, 2008a: Broiler Management Guide. Cobb-Vantress, Guapiacu-SP, Brazil.
  9. Corduk, M., N. Ceylan, and F. Ildiz. 2007. Effects of dietary energy density and L-carnitine supplementation on growth performance, carcass traits and blood parameters of broiler chickens. S. Afr. J. Anim. Sci. 37:65-73.
  10. Dourado, L. R. B., J. C. Siqueira, N. K. Sakomura, S. R. F. Pinheiro, S. M. Marcato, J. B. K. Fernandes, and J. H. V. Silva. 2010. Poultry feed metabolizable energy determination using total or partial excreta collection methods. Rev. Bras. Cienc. Avic. 12:129-132.
  11. Fagard, R. H., J. A. Staessen, and L. Thijs. 1996. Advantages and disadvantages of the meta-analysis approach. J. Hypertens. 14:9-13.
  12. Farrel, D. J. 1978. Rapid determination of metabolizable energy of foods using cockerels. Br. Poult. Sci. 19:303-308. https://doi.org/10.1080/00071667808416480
  13. Frikha, M., M. P. Serrano, D. G. Valencia, P. G. Rebollar, J. Fickler, and G. G. Mateos. 2012. Correlation between ileal digestibility of amino acids and chemical composition of soybean meals in broilers at 21 days of age. Anim. Feed Sci. Technol. 178:103-114. https://doi.org/10.1016/j.anifeedsci.2012.09.002
  14. Garnsworthy, P. C., J. Wiseman, and K. Fegeros. 2000. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. J. Agric. Sci. 135:409-417. https://doi.org/10.1017/S0021859699008382
  15. Hill, F. W. and D. L. Anderson. 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587-603.
  16. Lesson, S. and J. D. Summers. 1997. Commercial Poultry Nutrition, 2nd ed. University of Books, Guelph, ON, Canada. 350. p.
  17. Longland, A. C. 1991. Digestive enzyme activities in pigs and poultry. In: In Vitro Digestion for Pigs and Poultry (Ed. M. F. Fuller). CAB International, Wallingford, UK. pp. 3-18.
  18. Mariano, F. C. M. Q., R. R. Lima, P. B. Rodrigues, R. R. Alvarenga, and G. A. J. Nascimento. 2012. Prediction equations of energetic values of feedstuffs obtained using meta-analysis and principal components. Cienc. Rural 42: 1634-1640. (Abstr. in English). https://doi.org/10.1590/S0103-84782012005000061
  19. Matterson, L. D., L. M. Potter, M. W. Stutz, and E. P. Singsen. 1965. The metabolizable energy of feed ingredients for chickens (Research Report, 7). Agric. Exp. Station, University of Connecticut, Storrs, CT, USA. p. 11-14.
  20. Mayer, D. G., M. A. Stuart, and A. J. Swain. 1994. Regression of real-world data on model output: an appropriate overall test of validity. Agric. Syst. 45:93-104. https://doi.org/10.1016/S0308-521X(94)90282-8
  21. Min, Y. N., J. S. Shi, F. W. Wei, H. J. Wang, X. F. Hou, Z. Y. Niu, and F. Z. Liu. 2012. Effects of dietary energy and protein on growth performance and carcass quality of broilers during finishing phase. J. Anim. Vet. Adv. 11:3652-3657. https://doi.org/10.3923/javaa.2012.3652.3657
  22. Murugesan, G. R., B. J. Kerr, and M. E. Persia. 2013. Evaluation of energy values of various oil sources when fed to broiler chicks. Anim. Ind. Rep. AS 659, ASL R2804.
  23. Nascimento, G. A. J., P. B. Rodrigues, R. T. F. Freitas, A. G. Bertechini, R. R. Lima, and L. E. A. Pucci. 2009. Prediction equations to estimate the energy values of plant origin concentrate feeds for poultry utilizing the meta-analysis. Rev. Bras. Zootec. 38:1265-1271. (Abstr. in English). https://doi.org/10.1590/S1516-35982009000700015
  24. Nascimento, G. A. J., P. B. Rodrigues, R. T. F. Freitas, R. V. Reis Neto, R. R. Lima, and I. B. Allaman. 2011a. Prediction equations to estimate metabolizable energy values of energetic concentrate feedstuffs for poultry by the meta-analysis process. Arq. Bras. Med. Vet. Zootec. 63:222-230. (Abstr. in English). https://doi.org/10.1590/S0102-09352011000100032
  25. Nascimento, G. A. J., P. B. Rodrigues, R. T. F. Freitas, I. B. Allaman, R. R. Lima, and R. V. Reis Neto. 2011b. Prediction equations to estimate the AMEn values of protein feedstuffs for poultry utilizing meta-analysis. Rev. Bras. Zootec. 40:2172-2177. (Abstr. in English). https://doi.org/10.1590/S1516-35982011001000016
  26. NRC (National Research Council). 1994. Nutrient Requirements of Poultry, 9th ed. National Academy Press, Washington, DC, USA.
  27. Neter, J., W. Wasserman, and M. Kutner. 1985. Applied linear statistical models. Regression, Analysis of Variance, and Experimental Design, 2nd ed. Irwin, Homewood, IL, USA.
  28. Nunes, J. O., A. G. Bertechini, J. A. G. Brito, L. Makiyama, F. R. Mesquita, and C. M. Nishio. 2012. Evaluation of cysteamine associated with different energy patterns in diets for broiler chickens. Rev. Bras. Zootec. 41:1956-1960. https://doi.org/10.1590/S1516-35982012000800022
  29. Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. Oliveira, D. C. Lopes, A. S. Ferreira, and S. L. T. Barreto. 2005. Brazilian Tables for Poultry and Wwine: Composition of Feedstuffs and Nutritional Requirements, 2nd ed. Federal University of Vicosa, Vicosa, p. 181.
  30. Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. Oliveira, D. C. Lopes, A. S. Ferreira, S. L. T. Barreto and R. F. Euclides. 2011. Brazilian tables for poultry and swine: Composition of feedstuffs and nutritional requirements. Third ed. Federal University of Vicosa, Vicosa, Brazil. p. 252.
  31. SAS Institute Inc. 2004. STAT User's Guide. version 9.00. 4th edn. Cary, NC, USA.
  32. Sibbald, I. R. 1976. A bioassay for true metabolizable energy in feedingstuffs. Poult. Sci. 55:303-308. https://doi.org/10.3382/ps.0550303
  33. Sibbald, I. R. and S. J. Slinger. 1963. A biological assay for metabolizable energy in poultry feed ingredients together with findings which demonstrate some of the problems associated with the evaluation of fats. Poult. Sci. 42:313-325. https://doi.org/10.3382/ps.0420313
  34. Silva, E. P., C. B. V. Rabello, M. B. Lima, E. M. F. Arruda, J. V. Ludke, and M. C. M. M. Ludke. 2012. Determination of the chemical composition, amino acid levels and energy values of different poultry offal meals for broilers. Rev. Bras. Cienc. Avic. 14:97-107. https://doi.org/10.1590/S1516-635X2012000200003
  35. Tedeschi, L. O. 2006. Assessment of the adequacy of mathematical models. Agric. Syst. 89:225-247. https://doi.org/10.1016/j.agsy.2005.11.004
  36. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  37. Wan, H. F., W. Chen, Z. L. Qi, P. Peng, and J. Peng. 2009. Prediction of true metabolizable energy from chemical composition of wheat milling by-products for ducks. Poult. Sci. 88:92-97. https://doi.org/10.3382/ps.2008-00160
  38. Wongsuthavas, S., S. Terapuntuwat, W. Wongsrikeaw, S. Katawatin, C. Yuangklang, and A. C. Beynen. 2008. Influence of amount and type of dietary fat on deposition, adipocyte count and iodine number of abdominal fat in broiler chickens. J. Anim. Physiol. Anim. Nutr. 92:92-98.
  39. Zhang, W. J., L. D. Campbell, and S. C. Stothers. 1994. An investigation of the feasibility of predicting nitrogen-corrected true metabolizable energy (TMEn) content in barley from chemical composition and physical characteristics. Can. J. Anim. Sci. 74:355-360. https://doi.org/10.4141/cjas94-048

Cited by

  1. Influence of dietary artemisinin supplementation on productive performance and haematological parameters of broiler chickens vol.46, pp.2, 2017, https://doi.org/10.1590/s1806-92902017000200008
  2. Nutrient Content of Different Wheat and Maize Varieties and Their Impact on Metabolizable Energy Content and Nitrogen Utilization by Broilers vol.10, pp.5, 2015, https://doi.org/10.3390/ani10050907
  3. Application of Bayesian networks to the prediction of the AMEn: a new methodology in broiler nutrition vol.5, pp.1, 2021, https://doi.org/10.1093/tas/txaa215