DOI QR코드

DOI QR Code

Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature

  • Salinas-Chavira, J. (Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma de Tamaulipas) ;
  • Arzola, C. (Facultad de Zootecnia, UACH) ;
  • Gonzalez-Vizcarra, V. (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Manriquez-Nunez, O.M. (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Montano-Gomez, M.F. (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Navarrete-Reyes, J.D. (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Raymundo, C. (Instituto de Investigaciones en Ciencias Veterinarias, UABC) ;
  • Zinn, R.A. (Department of Animal Science, University of California)
  • 투고 : 2015.01.24
  • 심사 : 2015.03.20
  • 발행 : 2015.09.01

초록

In experiment 1, eighty crossbred steers ($239{\pm}15kg$) were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY) cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI) (linear effect, p<0.01) and average daily gain (ADG) (linear effect, p = 0.01). There were no treatment effects (p>0.10) on carcass characteristics. In experiment 2, four Holstein steers ($292{\pm}5kg$) with cannulas in the rumen and proximal duodenum were used in a $4{\times}4$ Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10) on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08), increased molar proportion of propionate (p = 0.09), and decreased acetate:propionate molar ratio (p = 0.07) and estimated ruminal methane production (p = 0.09). It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets.

키워드

참고문헌

  1. AOAC. 1986. Official Methods of Analysis, 13th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  2. AOAC. 2000. Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  3. Baumann, T. A., A. E. Radunz, G. P. Lardy, V. L. Andersons, J. S. Caton, and M. L. Bauer. 2004. Effects of tempering and a yeast-enzyme mixture on intake, ruminal fermentation, in situ disappearance, performance, and carcass traits in steers fed barley-based diets. Prof. Anim. Sci. 20:178-184.
  4. Beauchemin, K. A., W. Z. Yang, D. P. Morgavi, G. R. Ghorbani, W. Kautz, and J. A. Z. Leedle. 2003. Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle. J. Anim. Sci. 81:1628-1640.
  5. Bergen, W. G., D. B. Purser, and J. H. Cline. 1968. Effect of ration on the nutritive quality of rumen microbial protein. J. Anim. Sci. 27:1497-1501.
  6. Blackshaw, J. K. and A. W. Blackshaw. 1994. Heat stress in cattle and the effect of shade on production and behaviour: A review. Aust. J. Exp. Agric. 34:285-295. https://doi.org/10.1071/EA9940285
  7. Chae, B. J., J. D. Lohakare, W. K. Moon, S. L. Lee, Y. H. Park, and T. W. Hahn. 2006. Effects of supplementation of betaglucan on the growth performance and immunity in broilers. Res. Vet. Sci. 80:291-298. https://doi.org/10.1016/j.rvsc.2005.07.008
  8. Dawson, K. A., K. E. Newman, and J. A. Boling. 1990. Effects of microbial supplements containing yeast and lactobacilli on roughage-fed ruminal microbial activities. J. Anim. Sci. 68:3392-3398.
  9. Finck, D., S. Parr, T. R. Young, J. A. Carroll, J. Corley, A. Estefan, and B. Johnson. 2010. Interactive effects of yeast and yeast cell wall material on feedlot performance during the receiving period of stressed beef cattle. J. Anim. Sci. 88(E-Supplement 2):383 (abstract). https://doi.org/10.2527/jas.2009-2224
  10. Ganner, A., C. Stoiber, D. Wieder, and G. Schatzmayr. 2010. Quantitative in vitro assay to evaluate the capability of yeast cell wall fractions from Trichosporon mycotoxinivorans to selectively bind gram negative pathogens. J. Microbiol. Methods 83:168-174. https://doi.org/10.1016/j.mimet.2010.08.016
  11. Gomes, R. C., P. R. Leme, S. L. Silva, M. T. Antunes, and C. F. Guedes. 2009. Carcass quality of feedlot finished steers fed yeast, monensin, and the association of both additives. Arq. Bras. Med. Vet. Zootec. 61:648-654. https://doi.org/10.1590/S0102-09352009000300018
  12. Hill, F. N. and D. L. Anderson. 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587-603.
  13. Hinman, D. D., S. J. Sorensen, and P. A. Momont. 1998. Effect of yeast culture on steer performance, apparent diet digestibility, and carcass measurements when used in a barley and potato finishing diet. Prof. Anim. Sci. 14:173-177.
  14. Hubbard, K. G., D. E. Stookesbury, G. L. Hahn, and T. L. Mader. 1999. A climatological perspective on feedlot cattle performance and mortality to the Temperature-Humidity index. J. Prod. Agric. 12:650-653. https://doi.org/10.2134/jpa1999.0650
  15. Kmet, V., Z. Jonecova, and M. Stachova. 1992. The effect of pectynolitic yeasts on rumen microflora. J. Anim. Feed Sci. 1:165-170.
  16. Lei, C. L., G. Z. Dong, L. Jin, S. Zhang, and J. Zhou. 2013. Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livest. Sci. 158:57-63. https://doi.org/10.1016/j.livsci.2013.08.019
  17. Li, J., D. F. Li, J. J. Xing, Z. B. Cheng, and C. H. Lai. 2006. Effects of beta-glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci. 84:2374-2381. https://doi.org/10.2527/jas.2004-541
  18. Liu, J., G. Ye, Y. Zhou, Y. Liu, L. Zhao, Y. Liu, X. Chen, D. Huang, S. F. Liao, and K. Huang. 2014. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress. J. Anim. Sci. 92:2494-2502. https://doi.org/10.2527/jas.2013-7152
  19. Lopez-Soto, M. A., Y. S. Valdes-Garcia, A. Plascencia, A. Barreras, B. I. Castro-Perez, A. Estrada-Angulo, F. G. Rios, A. Gomez- Vazquez, L. Corona, and R. A. Zinn. 2013. Influence of feeding live yeast on microbial protein synthesis and nutrient digestibility in steers fed a steam-flaked corn-based diet. Acta Agric. Scand., Section A - Anim. Sci. 63:39-46.
  20. Lowry, V. K., M. B. Farnell, P. J. Ferro, C. L. Swaggerty, A. Bahl, and M. H. Kogut. 2005. Purified beta-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enterica serovar Enteritidis. Int. J. Food Microbiol. 98:309-318. https://doi.org/10.1016/j.ijfoodmicro.2004.06.008
  21. Mader, T. L., M. S. Davis, and T. Brown-Brandl. 2006. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 84:712-719.
  22. Murphey, C. E., D. K. Hallett, W. E. Tyler, and J. C. Pierce Jr. 1960. Estimating yields of retail cuts from beef carcasses. Paper presented at the 62nd meeting of the American Society of Animal Production, Chicago, IL, USA.
  23. Nocek, J. E., M. G. Holt, and J. Oppy. 2011. Effects of supplementation with yeast culture and enzymatically hydrolyzed yeast on performance of early lactation dairy cattle. J. Dairy Sci. 94:4046-4056. https://doi.org/10.3168/jds.2011-4277
  24. NRC. 1984. Nutrient Requirements of Beef Cattle, 6th rev. ed. National Academy Press, Washington, DC, USA.
  25. NRC. 1996. Nutrient Requirements of Beef Cattle, 7th rev. ed. National Academy Press, Washington, DC, USA.
  26. Orskov, E. R., N. A. MacLeod, and D. J. Kyle. 1986. Flow of nitrogen from the rumen and abomasum in cattle and sheep given protein-free nutrients by intragastric infusion. Br. J. Nutr. 56:241-248. https://doi.org/10.1079/BJN19860103
  27. Plata, P. F., M. Mendoza, J. R. Barcena-Gama, and M. S. Gonzalez. 1994. Effect of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiber digestion in steers fed oat straw based diets. Anim. Feed Sci. Technol. 49:203-210. https://doi.org/10.1016/0377-8401(94)90046-9
  28. Reisinger, N., A. Gannera, S. Masching, G. Schatzmayr, and T. J. Applegate. 2012. Efficacy of a yeast derivative on broiler performance, intestinal morphology and blood profile. Livest. Sci. 143:195-200. https://doi.org/10.1016/j.livsci.2011.09.013
  29. Rhoads, M. L., R. P. Rhoads, M. J. VanBaale, R. J. Collier, S. R. Sanders, W. J. Weber, B. A. Crooker, and L. H. Baumgard. 2009. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 92:1986-1997. https://doi.org/10.3168/jds.2008-1641
  30. Sanchez, N. C. B., T. R. Young, J. A. Carroll, J. R. Corley, R. J. Rathmann, and B. J. Johnson. 2013. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate Immun. 19:411-419. https://doi.org/10.1177/1753425912469673
  31. Sanchez, N. C. B., T. R. Young, J. A. Carroll, J. R. Corley, R. J. Rathmann, and B. J. Johnson. 2014. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate Immun. 20:104-112. https://doi.org/10.1177/1753425913482152
  32. Swyers, K. L., J. J. Wagner, K. L. Dorton, and S. L. Archibeque. 2014. Evaluation of Saccharomyces cerevisiae fermentation product as an alternative to monensin on growth performance, cost of gain, and carcass characteristics of heavy-weight yearling beef steers. J. Anim. Sci. 92:2538-2545. https://doi.org/10.2527/jas.2013-7559
  33. USDA. 1997. United States Standards for Grading of Carcass Beef. Washington (DC): Agricultural Marketing Service, USDA.
  34. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  35. Vyas, D., A. Uwizeye, R. Mohammed, W. Z. Yang, N. D. Walker, and K. A. Beauchemin. 2014. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. J. Anim. Sci. 92:724-732. https://doi.org/10.2527/jas.2013-7072
  36. Williams, P. E.V., C. A. G. Tait, G. M. Innes, and C. J. Newbold. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim. Sci. 69:3016-3026.
  37. Wolin, M. J. 1960. A theoretical rumen fermentation balance. J. Dairy Sci. 43:1452-1459. https://doi.org/10.3168/jds.S0022-0302(60)90348-9
  38. Young, B. A. and A. B. Hall. 1993. Heat load in cattle in the Australian environment. In: Australian Beef (Ed. B. Coombs). Morescope Pty Ltd., Melbourne, Victoria, Australia. pp. 143-148.
  39. Zinn, R. A. 1988. Comparative feeding value of supplemental fat in finishing diets for feedlot steers supplemented with and without monensin. J. Anim. Sci. 66:213-227.
  40. Zinn, R. A. 1990. Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle. J. Anim. Sci. 68:767-775.
  41. Zinn, R. A. and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-166. https://doi.org/10.4141/cjas86-017
  42. Zinn, R. A. and A. Plascencia. 1993. Interaction of whole cottonseed and supplemental fat on digestive function in cattle. J. Anim. Sci. 71:11-17.
  43. Zinn, R. A. and J. L. Borquez. 1993. Interaction of restricted versus ad libitum access to feed on effects of yeast culture supplementation on digestive function in feedlot calves. Western Sec. Am. Soc. Anim. Sci. 44:424.
  44. Zinn, R. A. and Y. Shen. 1998. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J. Anim. Sci. 76:1280-1289.

피인용 문헌

  1. Effects of restricted vs. step up dietary adaptation for 6 or 9 days on feedlot performance, feeding behaviour, ruminal and blood variables of Nellore cattle pp.09312439, 2017, https://doi.org/10.1111/jpn.12681
  2. Supplementing a yeast-derived product to enhance productive and health responses of beef steers pp.1751-732X, 2018, https://doi.org/10.1017/S1751731117003585
  3. Influence of feeding enzymatically hydrolysed yeast cell wall + yeast culture on growth performance of calf-fed Holstein steers vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2017.1299742
  4. Effect of a hydrolyzed mannan- and glucan-rich yeast fraction on performance and health status of newly received feedlot cattle1 vol.96, pp.9, 2015, https://doi.org/10.1093/jas/sky255
  5. Effect of yeast cell wall supplementation on production performances and blood biochemical indices of dairy cows in different lactation periods vol.12, pp.6, 2015, https://doi.org/10.14202/vetworld.2019.796-801
  6. Effects of yeast culture supplementation and the ratio of non‐structural carbohydrate to fat on growth performance, carcass traits and the fatty acid profile of the longissimus dorsi muscle in l vol.103, pp.5, 2015, https://doi.org/10.1111/jpn.13128
  7. Evaluation of an active live yeast (Levucell Saccharomyces cerevisiae , CNCM l-1077) on receiving and backgrounding period growth performance and efficiency of dietary net energy utilization in low h vol.4, pp.3, 2020, https://doi.org/10.1093/tas/txaa127
  8. Performance, health, and physiological responses of newly received feedlot cattle supplemented with pre- and probiotic ingredients vol.15, pp.5, 2015, https://doi.org/10.1016/j.animal.2021.100214
  9. A meta-analysis of yeast products for beef cattle under stress conditions: Performance, health and physiological parameters vol.283, pp.None, 2022, https://doi.org/10.1016/j.anifeedsci.2021.115182