DOI QR코드

DOI QR Code

Molecular Weight, Protein Binding Affinity and Methane Mitigation of Condensed Tannins from Mangosteen-peel (Garcinia mangostana L)

  • Paengkoum, P. (Institute of Agricultural Technology, Suranaree University of Technology) ;
  • Phonmun, T. (King Mongkut Institute of Technology Ladkrabang Chumphon Campus) ;
  • Liang, J.B. (Institute of Tropical Agriculture, Universiti Putra Malaysia) ;
  • Huang, X.D. (Institute of Tropical Agriculture, Universiti Putra Malaysia) ;
  • Tan, H.Y. (School of Public Health, Lanzhou University) ;
  • Jahromi, M.F. (Institute of Tropical Agriculture, Universiti Putra Malaysia)
  • Received : 2013.12.20
  • Accepted : 2015.04.11
  • Published : 2015.10.01

Abstract

The objectives of this study were to determine the molecular weight of condensed tannins (CT) extracted from mangosteen (Garcinia mangostana L) peel, its protein binding affinity and effects on fermentation parameters including total gas, methane ($CH_4$) and volatile fatty acids (VFA) production. The average molecular weight ($M_w$) of the purified CT was 2,081 Da with a protein binding affinity of 0.69 (the amount needed to bind half the maximum bovine serum albumin). In vitro gas production declined by 0.409, 0.121, and 0.311, respectively, while CH4 production decreased by 0.211, 0.353, and 0.549, respectively, with addition of 10, 20, and 30 mg CT/500 mg dry matter (DM) compared to the control (p<0.05). The effects of CT from mangosteen-peel on in vitro DM degradability (IVDMD) and in vitro N degradability was negative and linear (p<0.01). Total VFA, concentrations of acetic, propionic, butyric and isovaleric acids decreased linearly with increasing amount of CT. The aforementioned results show that protein binding affinity of CT from mangosteen-peel is lower than those reported for Leucaena forages, however, the former has stronger negative effect on IVDMD. Therefore, the use of mangosteen-peel as protein source and $CH_4$ mitigating agent in ruminant feed requires further investigations.

Keywords

References

  1. Aerts, R. J., W. C. McNabb, A. Molan, A. Brand, T. N. Barry, and J. S. Peters. 1999. Condensed tannins from Lotus corniculatus and Lotus pedunculatus exert different effects on the in vitro rumen degradation of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) protein. J. Sci. Food Agric. 79:79-85. https://doi.org/10.1002/(SICI)1097-0010(199901)79:1<79::AID-JSFA187>3.0.CO;2-K
  2. Castillo, A. C., O. C. Cuyugan, S. Fogarty, and H. M. Shelton. 1997. Growth, psyllid resistance and forage quality of Leucaena leucocephala$\times$L. pallid. Trop. Grassl. 31:188-200.
  3. Frutos, P., G. Hervas, F. J. Giraldez, and A. R. Mantecon. 2004. Review. Tannins and ruminant nutrition. Spanish J. Agric. Res. 2:191-202. https://doi.org/10.5424/sjar/2004022-73
  4. Huang, X. D., J. B. Liang, H. Y. Tan, R. Yahya, B. Khamseekhiew, and Y. W. Ho. 2010. Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Anim. Feed Sci. Technol. 159: 81-87. https://doi.org/10.1016/j.anifeedsci.2010.05.008
  5. Huang, X. D., J. B. Liang, H. Y. Tan, R. Yahya, and Y. W. Ho. 2011a. Effects of Leucaena condensed tannins of differing molecular weights on in vitro $CH_4$ production. Anim. Feed Sci. Technol. 166-167:373-376. https://doi.org/10.1016/j.anifeedsci.2011.04.026
  6. Huang, X. D., J. B. Liang, H. Y. Tan, R. Yahya, R. J. Long, and Y. W. Ho. 2011b. Protein-binding affinity of Leucaena condensed tannins of differing molecular weights. J. Agric. Food Chem. 59:10677-10682. https://doi.org/10.1021/jf201925g
  7. Jones, R. J., J. H. F. Meyer, M. Bechaz, and M. A. Stoltz. 2000. An approach to screening potential pasture species for condensed tannin activity. Anim. Feed Sci. Technol. 85:269-277. https://doi.org/10.1016/S0377-8401(00)00144-9
  8. Kariuki, I. W. and B. W. Norton. 2008. The digestion of dietary protein bound by condensed tannins in the gastro-intestinal tract of sheep. Anim. Feed Sci. Technol. 142(3-4):197-209. https://doi.org/10.1016/j.anifeedsci.2007.08.006
  9. Lascano, C., P. Avila, and J. Stewart. 2003. Intake, digestibility and nitrogen utilization by sheep fed with provenances of Calliandra calothyrsus Meissner with different tannin structure. Arch. Latinoam. Prod. Anim. 11:21-28.
  10. Makkar, H. P. S., M. Blummel, and K. Becker. 1997. In vitro rumen apparent and true digestibilities of tannin-rich forages. Anim. Feed Sci. Technol. 67:245-251. https://doi.org/10.1016/S0377-8401(96)01146-7
  11. Makkar, H. P. S., P. K. Dawra, and B. Singh. 1987. Protein precipitation assay for quantitation of tannins: Determination of protein in tannin-protein complex. Anal. Biochem. 166: 435-439. https://doi.org/10.1016/0003-2697(87)90596-3
  12. McAllister, T. A., H. D. Bae, G. A. Jones, and K. J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018. https://doi.org/10.2527/1994.72113004x
  13. McNeil, D. M., N. Osborne, M. K. Komolong, and D. Nankervis. 1998. Condensed tannins in the genus Leucaena and their nutritional significance for ruminants. ACIAR proceedings No. 86, Leucaena-Adaptation, Quality and Farming System, Hanoi Vietnam. pp. 205-214.
  14. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained by chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:55.
  15. Ngamsaeng, A., M. Wanapat, and S. Khampa. 2006. Effects of mangosteen peel (Garcinia mangostana) supplementation on rumen ecology, microbial protein synthesis, digestibility and voluntary feed intake in cattle. Pakistan J. Nutr. 5:445-452. https://doi.org/10.3923/pjn.2006.445.452
  16. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
  17. Pilajun, R. and M. Wanapat. 2011. Methane production and methanogen population in rumen liquor of swamp buffalo as influenced by coconut oil and mangosteen peel powder supplementation. J. Anim. Vet. Adv. 10:2523-2527. https://doi.org/10.3923/javaa.2011.2523.2527
  18. Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat, and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400. https://doi.org/10.1080/17450390903020406
  19. Sahoo, A., B. Singh, and T. K. Bhat. 2010. Effect of tannins on in vitro ruminal protein degradability of various tree forages. Livest. Res. Rural Dev. 22(7).
  20. Shoji, T., S. Masumoto, N. Moriichi, T. Kanda, and Y. Ohtake. 2006. Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC-ESI/MS and MALDI-TOF/MS. J. Chromatogr. A 1102:206-213. https://doi.org/10.1016/j.chroma.2005.10.065
  21. Suchitra, K. and M. Wanapat. 2008. Effects of mangosteen (Garcinia mangostana) peel and sunflower and coconut oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Livest. Res. Rural Dev. Volume 20. http://www.lrrd.org/lrrd20/supplement/such2.htm Accessed December 20, 2013.
  22. Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, and Y. W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sc. Technol. 169:185-193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
  23. Terrill, T. H., A. M. Rowan, G. B. Douglas, and T. N. Barry. 1992. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 58:321-329. https://doi.org/10.1002/jsfa.2740580306
  24. Terrill, T. H., W. R. Windham, J. J. Evans, and C. S. Hoveland. 1990. Condensed tannin concentration in Sericea lespedeza as influenced by preservation method. Crop Sci. 30:219-224. https://doi.org/10.2135/cropsci1990.0011183X003000010047x
  25. Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  26. Tiemann, T. T., C. E. Lascano, M. Kreuzer, and H. D. Hess. 2008a. The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. J. Sci. Food Agric. 88:1794-1803. https://doi.org/10.1002/jsfa.3282
  27. Tiemann, T. T., C. E. Lascano, H. R. Wettstein, A. C. Mayer, M. Kreuzer, and H. D. Hess. 2008b. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2:790-799.
  28. Thanh, V. D., N. V. Thu, and T. R. Preston. 2012. Effect of potassium nitrate or urea as NPN source and levels of mangosteen peel on in vitro gas and methane production using molasses, Operculina turperthum and Brachiaria mutica as substrate. Livest. Res. Rural Dev. Vol 24. Article #63. http://www.lrrd.org/lrrd24/4/thanh24063.htm Accessed December 20, 2013.
  29. Williams, V. M., L. J. Porter, and R. W. Hemingway. 1983. Molecular weight profiles of proanthocyanidin polymers. Phytochemistry 22:569-572. https://doi.org/10.1016/0031-9422(83)83048-9
  30. Yanagida, A., T. Kanada, T. Shoji, M. Ohnishi-Kameyama, and T. Nagata. 1999. Fractionation of apple procyanidins by size-exclusion chromatography. J. Chromatogr. A. 855:181-190. https://doi.org/10.1016/S0021-9673(99)00684-6
  31. Yang, Y. and M. Chien. 2000. Characterization of grape procyanidins using high-performance liquid chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Agric. Feed Chem. 48:3990-3996. https://doi.org/10.1021/jf000316q

Cited by

  1. rumen fermentation and methane production as affected by rambutan peel powder pp.0974-1844, 2017, https://doi.org/10.1080/09712119.2017.1371608
  2. Rambutan fruit peel powder and dietary protein level influencing on fermentation characteristics, nutrient digestibility, ruminal microorganisms and gas production using in vitro fermentation techniques pp.1573-7438, 2019, https://doi.org/10.1007/s11250-019-01837-x
  3. Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants vol.51, pp.4, 2015, https://doi.org/10.1007/s11250-018-1772-7
  4. Effects of Lonicera japonica extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population vol.90, pp.9, 2015, https://doi.org/10.1111/asj.13259
  5. Effects of Phytonutrients on Ruminal Fermentation, Digestibility, and Microorganisms in Swamp Buffaloes vol.9, pp.9, 2015, https://doi.org/10.3390/ani9090671
  6. Effect of Flemingia macrophylla silage on in vitro fermentation characteristics and reduced methane production vol.60, pp.16, 2015, https://doi.org/10.1071/an19281
  7. The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives - A Review vol.20, pp.2, 2015, https://doi.org/10.2478/aoas-2020-0005
  8. Dietary rambutan peel powder as a rumen modifier in beef cattle vol.33, pp.5, 2015, https://doi.org/10.5713/ajas.19.0342
  9. Research progress on the application of feed additives in ruminal methane emission reduction: a review vol.9, pp.None, 2015, https://doi.org/10.7717/peerj.11151
  10. Examining the Variables Leading to Apparent Incongruity between Antimethanogenic Potential of Tannins and Their Observed Effects in Ruminants-A Review vol.13, pp.5, 2015, https://doi.org/10.3390/su13052743
  11. Mitigating rumen methane and enhancing fermentation using rambutan fruit peel powder and urea in lactating dairy cows vol.105, pp.6, 2021, https://doi.org/10.1111/jpn.13526
  12. AptaNet as a deep learning approach for aptamer-protein interaction prediction vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-85629-0