DOI QR코드

DOI QR Code

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten (Department of Civil Engineering, National Kaohsiung University of Applied Sciences) ;
  • Shu, Chun-Ya (Department of Civil Engineering, National Kaohsiung University of Applied Sciences)
  • Received : 2015.06.16
  • Accepted : 2015.07.18
  • Published : 2015.08.25

Abstract

This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

Keywords

References

  1. Beaver Valley Slag, "www.bvslag.com/SlagExpansion.pdf ".
  2. Cengiz, D.A., Alaettin, K. and Umur, K.S. (2004), "Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash", Cement. Concrete. Res., 34(1), 99-102. https://doi.org/10.1016/S0008-8846(03)00247-3
  3. Chatterji, S. (1995), "Mechanism of expansion of concrete due to the presence of dead- burnt CaO and MgO", Cement. Concrete. Res., 25(1), 51-56. https://doi.org/10.1016/0008-8846(94)00111-B
  4. Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J.L., Proux, O., Domasf, J. and Bottero, J.Y. (2007), "Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach", J. Hazard. Mater., 139(3), 537-542. https://doi.org/10.1016/j.jhazmat.2006.02.060
  5. Chen, F. (2011), "Application of detection for stability of concrete in concrete quality evaluation", Fujian. Constr. Sci. Technol., 3, 47-48.
  6. Hwang, C.L. (2010), High Performance Concrete Theory and Practice, Chans book, Taipei, Taiwan (in Chinese).
  7. Ivanka, N. (2011), "Utilisation of steel slag as an aggregate in concrete", Mater. Struct., 44(9), 1565-1575. https://doi.org/10.1617/s11527-011-9719-8
  8. Krittiya, K., Pitisan K., Taweechai S., Pongsak C. and Somnuk T. (2013), "Effect of free lime content on properties of cement-fly ash mixtures", Constr. Build. Mater., 38, 829-836. https://doi.org/10.1016/j.conbuildmat.2012.09.035
  9. Kuo, W.T. and Shu, C.Y. (2014), "Application of high-temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures", Constr. Build. Mater., 50, 463-470. https://doi.org/10.1016/j.conbuildmat.2013.09.030
  10. Li, C.M. and Li, W.J. (2005), "Discussion on quality and expansiveness of expansive material-magnesium oxide", Des. Hydroelectric. Power. Station., 21(3), 95-99.
  11. Lizarazo-Marriaga, J., Claisse, P. and Ganjian, E. (2011), "Effect of steel slag and portland cement in the rate of hydration and strength of blast furnace slag pastes", J. Mater. Civil. Eng., 23(2), 153-160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000149
  12. Lun, Y., Zhou, M., Cai, X. and Xu, F. (2008), "Methods for improving volume stability of steel slag as fine aggregate", J. Wuhan. Univ. Technol. - Mater. Sci. Ed., 23(5), 737-742. https://doi.org/10.1007/s11595-007-5737-3
  13. Mahmoud, A. (2012), "Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates", Constr. Build. Mater., 26(1), 475-480. https://doi.org/10.1016/j.conbuildmat.2011.06.047
  14. Montenegro, J.M., Celemin-Matachana, M., Canizal, J. and Setien, J. (2013), "Ladle furnace slag in the construction of embankments: expansive behavior", J. Mater. Civil. Eng., 25(8), 972-979. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000642
  15. Motz, H. and Geiseler, J. (2001), "Products of steel slags an opportunity to save natural resources", Waste. Manage., 21(3), 285-293. https://doi.org/10.1016/S0956-053X(00)00102-1
  16. Mu, S.B., Sun, Z.Y. and Su, X.P. (2001), "A study on the microstructure and expanding mechanism of highly free-calcium oxide cements", J. Wuhan. Univ. Technol., 23(11), 27-30.
  17. Naganathan, S., Razak, H.A. and Nadzrian, A.H. (2010), "Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash", Waste. Manage. Res., 28(9), 848-860. https://doi.org/10.1177/0734242X09355073
  18. Netinger, I. (2011), "Utilisation of steel slag as an aggregate in concrete", Mater. Struct., 44(9), 1565-1575. https://doi.org/10.1617/s11527-011-9719-8
  19. Qasrawi, H. (2009), "Use of low CaO unprocessed steel slag in concrete as fine aggregate", Constr. Build. Mater., 23(2), 1118-1125. https://doi.org/10.1016/j.conbuildmat.2008.06.003
  20. Rafat, S. (2009), "Utilization of waste materials and by-products in producing controlled low-strength materials", Resour. Conserv. Recy., 54(1), 1-8. https://doi.org/10.1016/j.resconrec.2009.06.001
  21. Rodriguez, A., Gutierrez-Gonzalez, S., Horgnies, M. and Calderon, V. (2013), "Design and properties of plaster mortars manufactured with ladle furnace slag", Mater. Design., 52, 987-994. https://doi.org/10.1016/j.matdes.2013.06.041
  22. Shen, D.H., Wu, C.M. and Du, J.C. (2009), "Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture", Constr. Build. Mater., 23(1), 453-461. https://doi.org/10.1016/j.conbuildmat.2007.11.001
  23. Shi, C. and Qian, J. (2000), "High performance cementing materials from industrial slags-a review", Resour. Conserv. Recy., 29(3), 195-207. https://doi.org/10.1016/S0921-3449(99)00060-9
  24. Sivakumar, N., Hashim, A.R., Siti, N. and Abdul, H. (2012), "Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust", Mater. Design., 33, 56-63. https://doi.org/10.1016/j.matdes.2011.07.014
  25. Svanera, M. (2012), "An innovative system for the re-use of slag from the electric arc furnace", Metall. Italiana., 2, 37-43.
  26. Tareq, S. and Attar, A. (2013), "A mathematical model for predicting autoclave expansion for portland cement", Impact. Factor., 4(1), 110-116.
  27. Vagelis, G.P. (2000), "Effect of fly ash on portland cement systems: Part II. high-calcium fly ash", Cement. Concrete. Res., 30(10), 1647-1654. https://doi.org/10.1016/S0008-8846(00)00388-4
  28. Wang, G. (2010), "Determination of the expansion force of coarse steel slag aggregate", Constr. Build. Mater., 24(10), 1961-1966. https://doi.org/10.1016/j.conbuildmat.2010.04.004
  29. Wang, G. and Emery, J. (2004), "Technology of slag utilization in highway construction", Proceedings of the Transportation Association on Annual Conference, Quebec, Canada.
  30. Wang, G., Wang, Y. and Gao, Z. (2010), "Use of steel slag as a granular material: volume expansion prediction and usability criteria", J. Hazard. Mater., 184(1-3), 555-560. https://doi.org/10.1016/j.jhazmat.2010.08.071
  31. Wang, X.Y. and Lee, H.S. (2014), "Prediction of compressive strength of Slag concrete using a blended cement hydration model", Comput. Concrete., 14(3), 247-262. https://doi.org/10.12989/cac.2014.14.3.247
  32. Wang, Y.K. (2008), "Effect of basic oxygen furnace slag on porous asphalt concrete", M.S. thesis, National Cheng Kung Univ., Taiwan (in Chinese).
  33. Word steel Association, World steel in Figs. 2013. Belgium. ISBN: 978-2- 930069-73-9.
  34. Wu, S., Xue, Y., Ye, Q. and Chen, Y. (2007), "Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures", Build. Environ., 42(7), 2580-2585. https://doi.org/10.1016/j.buildenv.2006.06.008

Cited by

  1. Analytical model of expansion for electric arc furnace oxidizing slag-containing concrete vol.18, pp.5, 2016, https://doi.org/10.12989/cac.2016.18.5.937
  2. Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing vol.16, pp.3, 2015, https://doi.org/10.12989/cac.2015.16.3.487
  3. Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.111