DOI QR코드

DOI QR Code

The increase of blood vessels using a signal during the image acquisition phase T1 shortening effect

위상영상 획득 시 T1 shortening effect를 이용한 혈관의 신호 증가에 관한 연구

  • 이호범 (서울아산병원 영상의학과) ;
  • 최관우 (서울아산병원 영상의학과) ;
  • 손순룡 (서울아산병원 영상의학과) ;
  • 민정환 (신구대학교 방사선과) ;
  • 이종석 (원광보건대학교 방사선과) ;
  • 유병규 (원광보건대학교 방사선과)
  • Received : 2015.04.06
  • Accepted : 2015.07.16
  • Published : 2015.07.31

Abstract

The purpose of this study is to obtain a useful diagnostic image by increasing the signal strength of the peripheral artery, was to use a T1 shortening effect of gadolinium contrast agents to improve the disadvantages of the phase image. From october to december 2014 thirty patients were underwent the MRI scanning, except for heart disease. Research method was evaluated comparing the image after gadolinium contrast MR image acquisition step before evaluating the difference between the signal intensity for T1 shortening effect. In frontal lobe 19.45%, temporal lobe 23.09%, occipital lobe 25.45%, parietal lobe 18.82%, cerebellum 20.93% after peripheral arterial signal strength results of gadolinium contrast agent injection was increased significantly after injection of gadolinium both statistically significant. After injecting a contrast agent gadolinium in SWI by increasing the signal strength of the T1 shortening effect can be obtained when using the phase image to give a useful image in diagnosis and treatment.

본 연구는 가돌리늄 조영제의 T1 shortening effect를 이용하여 말초동맥으로 갈수록 신호강도가 낮아지는 위상영상의 단점을 근본적으로 개선함으로써 진단에 유용한 영상을 획득하고자 하였다. 연구기간은 2014년 10월부터 동년 12월까지 시행하였으며, 심장질환자를 제외한 AVM 환자 30명을 대상으로 하였다. 연구방법은 T1 shortening effect에 따른 신호강도의 차이를 알아보기 위해 가돌리늄 조영제 주입 전 후 자화강조영상을 획득한 다음, 위상영상을 비교평가 하였다. 연구결과, 가돌리늄 조영제 주입 전, 후 뇌실질 내 말초동맥의 신호강도는 가돌리늄 조영제 주입 후가 주입 전에 비해 전두엽 19.45%, 측두엽 23.09%, 두정엽 18.82%, 후두엽 25.45%, 소뇌 20.93%로 증가 하였고 통계적으로 유의하였다. 그러므로 위상영상 획득 시 가돌리늄 조영제의 T1 shortening effect를 이용하면 위상영상의 단점을 보완할 수 있어 진단 및 치료에 유용한 영상을 획득할 수 있으리라 사료된다.

Keywords

References

  1. Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, Young WL Hademenos G, "AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke, 32(6), pp.1458-1471, 2001. DOI: http://dx.doi.org/10.1161/01.STR.32.6.1458
  2. Goldfarb JW, Hasan U, Zhao W, Han J, "Magnetic resonance susceptibility weighted phase imaging for the assessment of reperfusion intramyocardial hemorrhage Magnetic resonance in medicine", Magn Reson Med. doi: 10.1002/mrm.24747. 2014. DOI: http://dx.doi.org/10.1002/mrm.24747
  3. Bai X, Wang G, Wu L, Liu Y, Cui L, Shi H, Guo L, "Deep-gray nuclei susceptibility-weighted imaging filtered phase shift in patients with Wilson's disease", Pediatric research 75(3) pp.436-442, 0031-3998, 2014. DOI: http://dx.doi.org/10.1038/pr.2013.239
  4. Ogawa S, T.Lee, "magnetic resonance imaging of blood vessel at high field", Magn Reson Med, pp.9-18, 1990. DOI: http://dx.doi.org/10.1002/mrm.1910160103
  5. P. Sprawis, M. J. Bronskill, "The physics of magnetic resonance imaging", 1992.
  6. Soman S, Holdsworth SJ, Barnes PD, Rosenberg J, Andre JB, Bammer R, Yeom KW, "Improved T2* Imaging without Increase in Scan Time: SWI Processing of 2D Gradient Echo", AJNR Am J Neuroradiol, 34(11), pp.2092-2097, 2013. DOI: http://dx.doi.org/10.3174/ajnr.A3595
  7. Fahrendorf D, Schwindt W, Wolfer J, Jeibmann A, Kooijman H, Kugel H, Grauer O, Heindel W, Hesselmann V, Bink A, "Benefits of contrast- enhanced SWI in patients with glioblastoma multiforme", Eur radiol, 23(10), pp.2868-2879, 2013. DOI: http://dx.doi.org/10.1007/s00330-013-2895-x
  8. Kidwell C, Saver J, Villablance P, Duckwiler G, Fredieu A,Gough K, "Magnetic Resonance Imaging detection of microbleeds before thrombolysis: An Emerging Application", Stroke pp.95-98, 2002. DOI: http://dx.doi.org/10.1161/hs0102.101792
  9. Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Boodhey NK, Kapilamoorthy TR "Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review", Neuroradiology, pp.105-116, 2008. DOI: http://dx.doi.org/10.1007/s00234-007-0316-z
  10. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC "Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30(1), pp.19-30, 2000. DOI: http://dx.doi.org/10.3174/ajnr.A1400
  11. Kim TW, Choi HS, Koo J, Jung SL, Ahn KJ, Kim BS, Shin YS, Lee KS, "Intramural Hematoma Detection by Susceptibility-Weighted Imaging in Intracranial Vertebral Artery Dissection", Cerebrovascular diseases, 36(4), pp.292-298, 2013. DOI: http://dx.doi.org/10.1159/000354811
  12. Cheng AL, Batool S, McCreary CR, Lauzon ML, Frayne R, Goyal M, Smith EE, "Susceptibility-Weighted Imaging is More Reliable Than T2*-Weighted Gradient-Recalled Echo MRI for Detecting Microbleeds,Stroke, 44(10), pp.2782-2786, 2013. DOI: http://dx.doi.org/10.1161/STROKEAHA.113.002267
  13. Bernhard D, Klumpp, Sandstede, Klaus P, Lodmann, Achim S, Tobias H, Michael F, Ulrich K, Claus D, Claussen, Stephan M, "Intraindividual comparison of myocardial delayed enhancement MR imagion using gadobenate dimeglumine at 1.5T and 3T", European Radiology, 19(5), pp.1124-1131, 2009. DOI: http://dx.doi.org/10.1007/s00330-008-1248-7
  14. Gustav A, Johnnes M, Juerg H, Dominik W, Verena B, Christian W, Chris B, Daniel N, "Direct MR Arthrography at 1.5 and 3.0T: Singal Dependence on Gadolinium and Iodine Concentrations-Phantom Study", Radiology, 247(3), pp.706-716, 2008. DOI: http://dx.doi.org/10.1148/radiol.2473071013
  15. Maunder A, Fallone B, Daneshmand M, "Exp1erimental verification of SNR and parallel imaging improvements using composite arrays", NMR in biomedicine 28(2), pp.141-153, 2015. DOI: http://dx.doi.org/10.1002/nbm.3230
  16. Choi KW, Son SY, Lee HB, "A research on improving signal to noise ratio for magnetic resonance imaging through increasing filling factor inside surface coil", Journal of the Korea Academia-Industrial, 13(11), pp. 5299-5304, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.11.5299
  17. Hartnell GG, Spence L, Hughes LA, Cohen MC, Saoual R, Buff B, "Safety of MR imaging in patients who have retained metallic materials after cardiac surgery", AJR Am J Roentgenol, 168(5), pp.1157-1159, 1997. DOI: http://dx.doi.org/10.2214/ajr.168.5.9129404
  18. Rosen BR, Belliveau JW, Vevea JM, Brady TJ, "Perfusion imaging with NMR contrast agents". Magn Reson Med, 14, pp.249-265, 1990. DOI: http://dx.doi.org/10.1002/mrm.1910140211
  19. Noebauer H, Iris-Melanie, Pinker K, Barth M, Mlynarik V, Ba-Ssalamah A, Saringer W F, Weber M, Benesch T, Witoszynskyj S, Rauscher A, Reichenbach JR, Trattnig, S, "Contrast- Enhanced, High-Resolution, Susceptibility- Weighted Magnetic Resonance Imaging of the Brain: Dose-Dependent Optimization At 3 Tesla and 1.5 Tesla In Healthy Volunteers" Investigative radiology, 41(30, pp.249-255, 2006. https://doi.org/10.1097/01.rli.0000188360.24222.5e
  20. Hori M, Ishigame K, Kabasawa H, Kumagai H, Ikenaga S, Shiraga N, Aoki S, Araki T,"Precontrast and postcontrast susceptibility- weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T", Jpn J Radiol, 28(4), pp.299-304, 2010. DOI: http://dx.doi.org/10.1007/s11604-010-0427-z
  21. Liu Q, Fan Z, Yang Q, Li D, "Peripheral arterial wall imaging using contrast-enhanced, susceptibility-weighted phase imaging", J Comput Assist Tomogr, 36(1), pp.77-82, 2012. DOI: http://dx.doi.org/10.1097/RCT.0b013e3182388cdf