http://dx/doi.org/10.14775/ksmpe.2015.14.4.043

초점보정 렌즈설계 및 3D 프린터 이용 가공 특성평가(I)

신현명*, 윤성철**, 최해운*,#

*계명대학교 기계자동차공학과, **계명대학교 기계공학과 대학원

Optimum Design and Characterization of F-Theta Lens by a 3D Printer(I)

Hyun-Myung Shin^{*}, Sung-Chul Yoon^{**}, Hae-Woon Choi^{*,#}

^{*}Department of Mechanical and Automotive Engineering, Keimyung University

**Graduate school of Mechanical Engineering, Keimyung University

(Received 27 March 2015; received in revised form 26 May 2015; accepted 12 June 2015)

ABSTRACT

A focal length-correcting lens called the F-theta lens is required to compensate for the different focus on spot size due to the deflected incident laser beam. The F-theta lens was designed by the ray tracing method and fabricated by a 3D printer with polymer-based material. The designed F-theta lens is able to compensate for the focus on spot size by an incidence angle of 0 to 2 degrees. Based on the analysis of the simulation, there was almost no aberration in the 0° incidence angle, and the maximum of 50µm of aberration was observed at the incidence angle of 2° . Diffraction-encircled energy was analyzed to characterize the designed optics, and an image simulation was performed to confirm the actual image resolution.

Key Words: Ray Tracing(광선추적), 3D Print(3D 프린트), F- H Lens(초점보정렌즈), Optics Design(광학설계)

1. 서 론

레이저 광원은 단색성(Monochromatic), 결맞음 (Coherence) 그리고 높은 직진성(Directionality)의 장 점으로 인해서 저출력 광원으로서 디스플레이 목적 이나 고출력광원으로서 기계가공용으로 산업계전반 에서 많이 사용되어 왔다. 특히, 기계가공이 극히 어려운, 세라믹, 특수 금속, 열에 민감한 폴리머 재 료 뿐만 아니라 미세 가공의 영역까지의 전영역에 서 그 활용도가 높아지고 있다^[1-3]. 레이저 가공의 용이성을 위해 xy방향으로 레이저 광원을 편향 (Steering) 하는데, 각도 전환 후 초점 보상을 위해 초점보정광학렌즈 즉, F-theta 렌즈가 사용이 된다. F-theta 렌즈는 일정 영역내에 입사하는 광원의 입 사각이 일부 차이가 있더라도, 초점을 보정하여서 각도에 따른 초점거리를 보상해주는 장치이다^[4-5].

일반적으로 F-theta 렌즈는 여러 개의 렌즈를 조 합하여 사용하고 있는데, Trial and Error에 의한 광 학설계가 아주 복잡하고 렌즈의 형상 및 가공의 난 이도로 인해서 고가로 구분이 된다(Fig. 1).

[#] Corresponding Author : hwchoi@kmu.ac.kr Tel: +82-53-580-5216, Fax:+82-53-580-6067

Fig. 1 The concept of scanner and f-theta lens^[6]

일반적으로 레이저광원용 광학장치의 설계는 크 게 광선추적기법(Ray tracing)으로 불리우는 기하학 적 해석과 파장으로 인한 회절 및 간섭을 고려한 파장해석으로 나눌 수가 있다. 파장해석기법으로 설계되는 광학부품은 주로 홀로그램 등의 이미징 기술에 많이 사용되고 광원파장영역이나 파장의 수 십배 영역의 해석이 필요할 때 많이 사용된다. 반 면 광선추적기법은 그 연산이 비교적 간단하고, 주 로 Trial-Error 기법으로 설계되는 것이 특징이다 ^[7].

본 논문에서는 보급형 초점보상 렌즈 설계 및 제 작을 위해서 3D 프린터를 사용한 가공사례와 초점 광선추적기법을 사용한 광학부품의 설계 및 검증에 대한 연구결과를 소개하고자 한다.

2. 본문

2.1 광학장치 및 이론 배경

레이저광은 단색광(Monochromatic)으로서 일반적

조명이나 태양광에서 발생하는 색수차(Chromatic aberration)는 무시 할 수 있다. 광학계 설계를 위해 서 광축방향(x축)과 광축방향에 직교방향(y축)을 정 의하였다. 입사광원(Source)의 지름(Entrance pupil)을 D라 정의 하고, 광축과 광 입사 후 회절되는 광의 방향의 각을 θ 로 정의하면, 출사 위치의 최대 가 공범위 D'은 식 (1)과 같이 정의 될 수 있다^[8].

$$D' = D[1 - (\frac{2 \cdot L}{D}) \cdot \tan\theta]$$
 (1)

여기에서 입사각 θ 는 광원이동 또는 스캐너 내 부의 반사미러를 통해서 편향하는 각도를 말한다. 또한, 표면이 매끈한 물체의 경우 Snell's law로 빛 의 굴절과 투과 방향을 예측할 수 있으며 Vector 형태로 표현을 하면,

$$\cos\theta_1 = \vec{n} \cdot (-\vec{I}) \tag{2}$$

$$\cos\theta_2 = \sqrt[2]{1 - (\frac{n_1}{n_2})^2 (1 - (\cos\theta_1)^2)}$$
(3)

여기에서 θ₁은 입사각 θ₂는 출사각, n₁ 과 n₂ 는 재료의 굴절계수, 벡터 n 과 I 는 입사평면의 수직 벡터와 입사되는 빛과 수직한 벡터함수를 의미한 다.

2.2 렌즈의 설계

2.2.1 렌즈 데이터 및 ZEMAX 파라메터설정 광 시뮬레이션 소프트웨어는 ZEMAX-EE 버전을 사용 하였으며, 입력 파장을 Visible 영역 중 RGB로 설정 하여 486nm(Blue), 587nm(Green), 그리고 656nm(Red)로 설정하였다. 또한 레이저 빔의 입사 각을 축대칭으로 ± 2° 범위로 설정을 하였으며, 0°, 1°, 2° 의 범위에서 분석을 실시하였다.

경제성을 고려한 렌즈설계를 위해서 렌즈매수는 2매로 최소화 하였다. 렌즈 재질은 미러나 렌즈 Substrate로 가장 많이 사용하고 있는 BK7과 SK계 열을 사용하여서 설계 하였으며 최적화된 Parameter 는 Table 1에 정리되었다.

#	Radius	Thick	Mat'l	Semi-
				Diameter
0	Inf.	Inf.		Inf.
1	39.7	5.0	N-BK7	12.6
2	-68.4	7.5		12.4
3	-45.0	3.0	SF4	10.7
4	-187.9	80.1		10.5
5	Inf.			3.6

Fig. 2 Lens modeling (a) Optics layout (b) 3D Modeling

광선추적(Ray tracing)한 모델이 Fig. 2에 도시 되 어 있으며, 전체적인 광원(Source)와 렌즈 조립 및 최종 결상 위치가 Fig. 2(a)에 도시 되어 있다. 최적 설계를 위해서 마지막렌즈에서 초점위치를 80mm로 설정하였고, 시뮬레이션으로 얻은 최적 위치 80.13mm로 최종 결정 하였다. 이해를 돕기 위해서 3D 모델링이 Fig. 2(b)에 도시되었다.

2.2.2 입사각에 따른 Ray의 왜곡도 분석

레이저 빔을 각각 다른 Incidence 각도로 조사 했 을 때의 분석결과를 Fig. 3 그래프에서 분석하였다. Incidence 각도가 0°, 1°, 2° 일 때의 각각의 Ray가 가지는 왜곡도를 분석해 보았다.

(c) Incidence angle of 2° (Grid 10µm)

Fig. 3 Transverse ray fan plot for 0°, 1°, 2° incidence angles

시뮬레이션 결과 0°는 광축에 나란히 입사하는 빔으로서 파장에 따른 왜곡은 거의 없었으며 RGB 모두 최대 ± 20µm 이내 범위의 왜곡이 발생하였다. 1° Incidence의 경우 x축 방향과 y축 방향의 왜곡 이 비슷하였으며 모두 ± 15µm 이하로 분석이 되었 다. 다만, 2° Incidence의 경우 x 축방향의 왜곡은 ± 10µm 이하였으나, y축 방향으로는 최대 40µm 범위 까지 벗어 났다 (Fig. 3c).

이는 Incidence 각도가 커지면서 구면 수차 (Spherical abberations)가 증가하였기 때문일 것으로

(a) Incidence angle of 0° (Grid 10µm)

(b) Incidence angle of 1° (Grid 4µm)

(c) Incidence angle of 2° (Grid 10µm)

Fig. 4 Spot diagram plot for angles

Fig. 5 Diffraction Encircled Energy

분석된다. 이미지 위치에서의 초점왜곡에 대한 분석을 실시하였으며 Incidence 각도에 따른 spot 왜 곡량이 Fig. 4에 도시 되어 있다.

Fig. 4에서 도시된 것과 같이 초점위치에서의 분 포는 0°에서는 최대반경 3µm 범위에서 형성됨을 볼 수가 있었고, 1°에서는 최대반경 15µm 범위, 그리고 2° incidence 에서는 최대반경 약 50µm 범위 로 분포하는 것을 알 수가 있었다. 실제 2°에서 왜 곡도는 타원형으로 형성된 것을 볼 수가 있다.

2.2.3 Diffraction Encircled Energy

회절한계에 따른 구간영역 에너지를 간접적으로 구할 수 있다. DEE(Diffraction encircled energy)를 이용하면 회절에 따른 특정 원형, 정사각형, x방향, y방향의 거리에 따른 에너지비율을 구할 수가 있 다. Fig. 5에 예시된 것처럼 RGB 설정파장을 가지 는 레이저가 광학계를 통과했을 때 발생하는 회절 한계에 따른 에너지를 구할 수가 있다.

이러한 결과를 바탕으로 실제 이미지를 분석해 보았다. Fig. 6(a)에 예시된 바와 같이 입력이미지를 시뮬레이션 했을 때 Fig. 6(b)와 같은 출력 이미지 가 시현되었다. 파장별 그리고 위치별 효과를 검증 하기 위해서 "KSMPE 한국기계가공학회"라는 이미 지를 RGB 칼라를 두 줄로 배치하여 시뮬레이션 하 였다. Fig. 6(b)에서 나타난 바와 같이 글자 주위의 에지부분을 제외하고는 비교적 선명한 이미지가 시 현이 되었다. 또한 이미지 또는 초점의 왜곡도가 적어서 상대적으로 저정밀도의 렌즈설계 및 활용에 적합할 것으로 기대가 된다.

2.2.4 3D 프린터를 이용한 시제품 제작

설계내용을 바탕으로 하여 3D 모델링 이후 3D 프린터를 이용하여서 제작을 하였다(Fig. 7). 본 연 구에서 사용된 재료 광경화성수지는 3D 프린터 제 작사(3D Systems)에서 제공하는 우레탄 계열의 액 상 수지이며 UV(Ultra Violet)광에 노출시 경화되는 특징이 있다.

KSMPE 한국기계가공학회

Fig. 6 Image simulation (a) input (b) output

Fig. 7 3D Printer Fabricated F-theta lens

제작에 사용된 폴리우레탄 수지는 화학약품에 잘 견디고, 전기절연성 및 기계적강도가 좋아서 구조 재, 기포단열재, 기포쿠션, 탄성 섬유 등에 많이 사 용된다. 또한, 신축성이 좋아 고무의 대체물질로도 사용하며 거품 구조를 가지기 때문에 탄성이 있고 견고하며 가벼운 특성이 있다. 제작방법에 관한 세 부사항과 렌즈의 특성에 관한 내용은 추가논문에서 상세히 기술할 예정이다.

3. 결론 및 고찰

본 연구에서는 초점보정용 렌즈를 위한 광학계 최적설계에 대해서 연구한 결과를 수록 하였다. 광 학렌즈 최적 설계를 통해서 고해상도 이미지 구현 및 렌즈매수 감소로 인한 무게경량화와 더불어 에 너지손실감소 그리고 경제성을 확보하기 위한 렌즈 설계를 수행하였다. 광학장치 설계결과 0°에서 2° 범위의 일정각도 범위내에서 이미지 및 레이저빔의 왜곡을 최소화 할 수 있도록 설계가 되었음이 확인 되었다. 시뮬레이션 결과 0°에서의 왜곡은 거의 없 었으며 최대 2°에서 최대 50µm 이내 범위의 왜곡 이 발생하였다. 1° Incidence 각도의 경우 x 축방향 의 왜곡은 15µm 이하로 나타났다. 도출된 설계결과 를 왜곡도 분석. Diffraction encircled energy 방법 등 다양한 방법으로 검증하였으며, 이미지 시뮬레이션 을 통해서 이미지 왜곡도도 정성적으로 평가하였 다

REFERENCES

- Shin, B. S. and Lee, J H., "Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 11, No. 1, pp. 62~67, 2012.
- Yang, S. Y. Choi, S. D., Choi, M. S. and Chun, C. M., "Characteristics of Surface Hardened Press Die Materials by CO₂ Laser Beam Irradiation," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 10, No. 1, pp. 31~37, 2011.
- Lee, J. Y., Yoon, J. W, Kang, M. C. and Cho, S. H., "Comparison of Ablation Characteristics of Carbon Nanotube reinforced Hybrid Al₂O₃ by using Ultrashort Pulse Laser," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 12, No. 6, pp. 23~39, 2013.
- 4. Wu, H., Wang, Z., Fu, R. and Liu, J., "Design

of a hybrid diffractive/refractive achromatized telecentric f-h lens," Optik - International Journal for Light and Electron Optics, Vol. 117, No. 6, pp. 271~276, 2006.

- Han, S. B. and Choi, H. W., "Dual Laser Beam Joining Process for Polymers in Automotive Applications to Reduce Weights," Journal of Korean Welding and Joining Society, Vol. 31, No. 4, pp. 23~27, 2013.
- Special Optics (2015), "Custom Lens Design," Retrieved 1, Mat., 2015, from http://www.specialoptics.com.
- Alda, J., Rico-Garcia, J., Lopez-Alonso, J., Lail, B. and Boreman, G., "Design of Fresnel lenses and binary-staircase kinoforms of low value of the aperture number," Optics communications, 260, pp. 454~461, 2006.
- Haghighatzadeh, A. and Saadat, S., "Theoretical modeling of the divergence of a flat-topped beam from a two-stage beam shaper into a conical intensity profile after propagation in free space," Optics Communications, 313, pp. 49-55, 2014.