DOI QR코드

DOI QR Code

No Association between the CCR5Δ32 Polymorphism and Sporadic Esophageal Cancer in Punjab, North-West India

  • Sambyal, Vasudha (Department of Human Genetics, Human Cytogenetics Laboratory, Guru Nanak Dev University) ;
  • Manjari, Mridu (Department of Pathology, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Sudan, Meena (Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Uppal, Manjit Singh (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Singh, Neeti Rajan (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Singh, Harpreet (Liver & Digestive Diseases Centre) ;
  • Guleria, Kamlesh (Department of Human Genetics, Human Cytogenetics Laboratory, Guru Nanak Dev University)
  • Published : 2015.06.03

Abstract

Background: Chemokines and their receptors influence carcinogenesis and cysteine-cysteine chemokine receptor 5 (CCR5) directs spread of cancer to other tissues. A 32 base pair deletion in the coding region of CCR5 that might alter the expression or function of the protein has been implicated in a variety of immune-mediated diseases. The action of antiviral drugs being proposed as adjuvant therapy in cancer is dependent on CCR5 wild type status. In the present study, distribution of CCR5${\Delta}32$ polymorphism was assessed in North Indian esophageal cancer patients to explore the potential of using chemokine receptors antagonists as adjuvant therapy. Materials and Methods: DNA samples of 175 sporadic esophageal cancer patients (69 males and 106 females) and 175 unrelated healthy control individuals (69 males and 106 females) were screened for the CCR5${\Delta}32$ polymorphism by direct polymerase chain reaction (PCR). Results: The frequencies of wild type homozygous (CCR5/CCR5), heterozygous (CCR5/${\Delta}32$) and homozygous mutant (${\Delta}32/{\Delta}32$) genotypes were 96.0 vs 97.72%, 4.0 vs 1.71% and 0 vs 0.57% in patients and controls respectively. There was no difference in the genotype and allele frequencies of CCR5${\Delta}32$ polymorphism in esophageal cancer patients and control group. Conclusions: The CCR5${\Delta}32$ polymorphism is not associated with esophageal cancer in North Indians. As the majority of patients express the wild type allele, there is potential of using antiviral drug therapy as adjuvant therapy.

Keywords

References

  1. Adeli K, Ogbonna G (1990). Rapid purification of human DNA from whole blood for potential application in clinical chemistry laboratories. Clin Chem, 36, 261-4.
  2. Aldinucci D, Lorenzon D, Cattaruzza L, et al (2008). Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer, 122, 769-76. https://doi.org/10.1002/ijc.23119
  3. Aoki MN, Da Silva do Amaral Herrera AC, Amarante MK, et al (2009). CCR5 and p53 codon 72 gene polymorphisms: implications in breast cancer development. Int J Mol Med, 23, 429-35.
  4. Apostolakis S, Baritaki S, Krambovitis E, Spandidos DA (2005). Distribution of HIV/AIDSprotective SDF1, CCR5 and CCR2 gene variants within cretan population. J Clin Virol, 34, 310-14. https://doi.org/10.1016/j.jcv.2005.01.010
  5. Arya M, Patel HR, Williamson M (2003). Chemokines: key players in cancer. Curr Med Res Opin, 19, 557-64. https://doi.org/10.1185/030079903125002216
  6. Balistreri CR, Carruba G, Calabro M, et al (2009). CCR5 proinflammatory allele in prostate cancer risk: a pilot study in patients and centenarians from Sicily. Ann N Y Acad Sci, 1155, 289-92. https://doi.org/10.1111/j.1749-6632.2008.03691.x
  7. Balkwill F, Mantovani A (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539-45. https://doi.org/10.1016/S0140-6736(00)04046-0
  8. Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT (1997). Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by CCR5${\Delta}$32. J Biol Chem, 272, 30603-6. https://doi.org/10.1074/jbc.272.49.30603
  9. Bhasin MK, Walter H, Danker-Hopfe H (1992). The distribution of genetical, morphological and behavioral traits among the peoples of Indian region. Kamla-Raj Publishers, New Delhi.
  10. Borczuk AC, Papanikolaou N, Toonkel RL, et al (2008). Lung adenocarcinoma invasion in TGFbetaRII-deficient cells is mediated by CCL5/RANTES. Oncogene, 27, 557-64. https://doi.org/10.1038/sj.onc.1210662
  11. Chuang JY, Yang WH, Chen HT, et al (2009). CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol, 220, 418-26. https://doi.org/10.1002/jcp.21783
  12. Coussens LM, Werb Z (2002). Inflammation and cancer. Nature, 420, 860-7. https://doi.org/10.1038/nature01322
  13. Degerli N, Yilmaz E, Bardakci F (2005). The delta32 allele distribution of the CCR5 gene and its relationship with certain cancers in a Turkish population. Clin Biochem, 38, 248-52. https://doi.org/10.1016/j.clinbiochem.2004.11.001
  14. Dias S, Choy M, Rafii S (2001). The role of CXC chemokines in the regulation of tumor angiogenesis. Cancer Invest, 19, 732-8. https://doi.org/10.1081/CNV-100106148
  15. Duell EJ, Casella DP, Burk RD, Kelsey KT, Holly EA (2006). Inflammation, genetic polymorphisms in proinflammatory genes TNF-A, RANTES, and CCR5, and risk of pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev, 154, 726-31.
  16. Erreni M, Bianchi P, Laghi L, et al (2009). Expression of chemokines and chemokine receptors in human colon cancer. Methods Enzymol, 460, 105-21. https://doi.org/10.1016/S0076-6879(09)05205-7
  17. Eskandari-Nasab E, Hashemi M, Ebrahimi M, et al (2014). Evaluation of CCL5-403 G>A and CCR5Δ32 gene polymorphisms in patients with breast cancer. Cancer Biomark, 14, 343-51. https://doi.org/10.3233/CBM-140411
  18. Gawron AJ, Fought AJ, Lissowska J, et al (2011). Polymorphisms in chemokine and receptor genes and gastric cancer risk and survival in a high risk Polish population. Scand J Gastroenterol, 46, 333-40. https://doi.org/10.3109/00365521.2010.537679
  19. Ghilardi G, Biondi ML, Turri O, et al (2008). Genetic control of chemokines in severe human internal carotid artery stenosis. Cytokine, 41, 24-8. https://doi.org/10.1016/j.cyto.2007.10.007
  20. Guleria K, Sharma S, Manjari M, et al (2012). p.R72P, PIN3 Ins16bp Polymorphisms of TP53 and CCR5${\Delta}$32 in North Indian breast cancer patients. Asian Pac J Cancer Prev, 13, 3305-11. https://doi.org/10.7314/APJCP.2012.13.7.3305
  21. Kaimen-Maciel DR, Reiche EM, Brum Souza DG, et al (2007). CCR5-Delta32 genetic polymorphism associated with benign clinical course and magnetic resonance imaging findings in Brazilian patients with multiple sclerosis. Int J Mol Med, 20, 337-44.
  22. Kaur S, Sambyal V, Guleria K, et al (2014). Analysis of TP53 polymorphisms in North Indian sporadic esophageal cancer patients. Asian Pac J Cancer Prev, 15, 8413-22. https://doi.org/10.7314/APJCP.2014.15.19.8413
  23. Libert F, Cochaux P, Beckman G, et al (1998). The delta CCR5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in northeastern Europe. Hum Mol Genet, 7, 399-406. https://doi.org/10.1093/hmg/7.3.399
  24. Lucotte G (1997). Frequencies of the CC chemokine receptor 5 D32 allele in various populations of defined racial background. Biomed Pharmocother, 51, 469-73. https://doi.org/10.1016/S0753-3322(97)82328-1
  25. Majumder PP, Dey B (2001). Absence of the HIV-1 protective Delta CCR5 allele in most ethnic populations of India. Eur J Hum Genet, 9, 794-6. https://doi.org/10.1038/sj.ejhg.5200705
  26. Manes S, Mira E, Colomer R, et al (2003). CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. J Exp Med, 198, 1381-9. https://doi.org/10.1084/jem.20030580
  27. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23, 549-55. https://doi.org/10.1016/S1471-4906(02)02302-5
  28. Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB (1997). Global distribution of the CCR5 gene 32 base pair deletion. Nat Genet, 16, 100-03. https://doi.org/10.1038/ng0597-100
  29. McDermott DH, Conway SE, Wang T, et al (2010). Donor and recipient chemokine receptor CCR5 genotype is associated with survival after bone marrow transplantation. Blood, 115, 2311-8. https://doi.org/10.1182/blood-2009-08-237768
  30. Muller A, Homey B, Soto H, et al (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50-6. https://doi.org/10.1038/35065016
  31. Payne AS, Cornelius LA (2002). The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol, 118, 915-22. https://doi.org/10.1046/j.1523-1747.2002.01725.x
  32. Perret GY, Crepin M (2008). New pharmacological strategies against metastatic spread. Fundam Clin Pharmacol, 22, 465-92. https://doi.org/10.1111/j.1472-8206.2008.00614.x
  33. Potteaux S, Combadiere C, Esposito B, et al (2006). Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol, 26, 1858-63. https://doi.org/10.1161/01.ATV.0000231527.22762.71
  34. Rector A, Vermeire S, Thoelen I, et al (2001). Analysis of the CC chemokine receptor 5 (CCR5) delta-32 polymorphism in inflammatory bowel disease. Hum Genet, 108, 190-3. https://doi.org/10.1007/s004390100462
  35. Seidl H, Richtig E, Tilz H, et al (2007). Profiles of chemokine receptors in melanocytic lesions: de novo expression of CXCR6 in melanoma. Hum Pathol, 38, 768-80. https://doi.org/10.1016/j.humpath.2006.11.013
  36. Sidoti A, D'Angelo R, Rinaldi C, et al (2005). Distribution of the mutated delta 32 allele of the CCR5 gene in a Sicilian population. Int J Immunogenet, 32, 193-8. https://doi.org/10.1111/j.1744-313X.2005.00507.x
  37. Singh H, Sachan R, Jain M, Mittal B (2008). CCR5-Delta32 polymorphism and susceptibility to cervical cancer: association with early stage of cervical cancer. Oncol Res, 17, 87-91. https://doi.org/10.3727/096504008784523667
  38. Srivastava A, Pandey SN, Choudhuri G, Mittal B (2008). CCR5${\Delta}$32 polymorphism: associated with gallbladder cancer susceptibility. Scand J Immunol, 67, 516-22. https://doi.org/10.1111/j.1365-3083.2008.02097.x
  39. Stephens JC, Reich DE, Goldstein DB, et al (1998). Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet, 62, 1507-15. https://doi.org/10.1086/301867
  40. Sugasawa H, Ichikura T, Tsujimoto H, et al (2008). Prognostic significance of expression of CCL5/RANTES receptors in patients with gastric cancer. J Surg Oncol, 97, 445-50. https://doi.org/10.1002/jso.20984
  41. Sutton A, Friand V, Brule-Donneger S, et al (2007). Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res, 5, 21-33. https://doi.org/10.1158/1541-7786.MCR-06-0103
  42. Tan MC, Goedegebuure PS, Belt BA, Flaherty, et al (2009). Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol, 182, 1746-55. https://doi.org/10.4049/jimmunol.182.3.1746
  43. Tanyel CR, Cincin ZB, Gokcen-Rohlig B, et al (2013). Effects of genetic variants of CCR5 chemokine receptors on oral squamous cell carcinoma. Genet Mol Res, 12, 5714-20. https://doi.org/10.4238/2013.November.18.20
  44. van Deventer HW, O’Connor W Jr, Brickey WJ, et al (2005). C-C chemokine receptor 5 on stromal cells promotes pulmonary metastasis. Cancer Res, 65, 3374-9. https://doi.org/10.1158/0008-5472.CAN-04-2616
  45. Veillard NR, Kwak B, Pelli G, et al (2004). Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res, 94, 253-61. https://doi.org/10.1161/01.RES.0000109793.17591.4E
  46. Velasco-Velazquez M, Jiao X, De La Fuente M, et al (2012). CCR5 Antagonist blocks metastasis of basal breast cancer cells. Cancer Res, 72, 3839-50. https://doi.org/10.1158/0008-5472.CAN-11-3917
  47. von Luettichau I, Segerer S, Wechselberger A, et al (2008). A complex pattern of chemokine receptor expression is seen in osteosarcoma. BMC Cancer, 8, 23. https://doi.org/10.1186/1471-2407-8-23
  48. Weng CJ, Chien MH, Lin CW, et al (2010). Effect of CC chemokine ligand 5 and CC chemokine receptor 5 genes polymorphisms on the risk and clinicopathological development of oral cancer. Oral Oncol, 46, 767-72. https://doi.org/10.1016/j.oraloncology.2010.07.011
  49. Wilson J, Balkwill F (2002). The role of cytokines in the epithelial cancer microenvironment. Semin Cancer Biol, 12, 113-20. https://doi.org/10.1006/scbi.2001.0419
  50. Yang X, Ahmad T, Gogus F, et al (2004). Analysis of the CC chemokine receptor 5 (CCR5) Delta32 polymorphism in Behcet's disease. Eur J Immunogenet, 31, 11-4. https://doi.org/10.1111/j.1365-2370.2004.00444.x
  51. Zafiropoulos A, Crikas N, Passam AM, Spandidos DA (2004). Significant involvement of CCR2-64I and CXCL12-3a in the development of sporadic breast cancer. J Med Genet, 41, 59. https://doi.org/10.1136/jmg.2003.013649
  52. Zernecke A, Liehn EA, Gao JL, et al (2006). Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice: involvement of IL-10. Blood, 107, 4240-3. https://doi.org/10.1182/blood-2005-09-3922
  53. Zhang X, Haney KM, Richardson AC, et al (2010). Anibamine, a natural product CCR5 antagonist, as a novel lead for the development of anti-prostate cancer agents. Bioorg Med Chem Lett, 20, 4627-30. https://doi.org/10.1016/j.bmcl.2010.06.003
  54. Zheng B, Wiklund F, Gharizadeh B, et al (2006). Genetic polymorphism of chemokine receptors CCR2 and CCR5 in Swedish cervical cancer patients. Anticancer Res, 26, 3669-74.