DOI QR코드

DOI QR Code

Efficient methods for integrating weight function: a comparative analysis

  • Dubey, Gaurav (Department of Mechanical Engineering, Institute of Technology, Guru Ghasidas Vishwavidyalaya) ;
  • Kumar, Shailendra (Department of Civil Engineering, Institute of Technology, Guru Ghasidas Vishwavidyalaya)
  • Received : 2014.05.25
  • Accepted : 2015.07.27
  • Published : 2015.08.25

Abstract

This paper introduces Romberg-Richardson's method as one of the numerical integration tools for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic method are modified by using Richardson extrapolation method. The direct integration method is used as reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress intensity factor. It is found that modified methods (average stress over intervals-Richardson method, piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate results after a few numbers of iterations than those obtained using these methods in their original form. Romberg-Richardson's method is proven to be more efficient and accurate than Gauss-Chebyshev method for complex stress field.

Keywords

References

  1. Aaghaakouchak, A.A., Dharmavasan, S. and Glinka, G. (1990), "Stress intensity factors for cracks in structures under different boundary conditions", Eng. Fract. Mech., 37(5), 1125-1137. https://doi.org/10.1016/0013-7944(90)90033-D
  2. Anderson, T.L. and Glinka, G. (2006), "A closed-form method for integrating weight functions for partthrough cracks subject to Mode I loading", Eng. Fract. Mech., 73, 2153-216. https://doi.org/10.1016/j.engfracmech.2006.04.027
  3. Bueckner, H.F. (1970), "A novel principle for the computation of stress intensity factors", Zeitschrift fur angewandte Mathematik und Mechanik, 50(9), 529-546.
  4. Das, S., Prasad, R. and Mukhopadhyay, S. (2011), "Stress intensity factor of an edge crack in composite media", Int. J. Fract., 172, 201-207. https://doi.org/10.1007/s10704-011-9652-4
  5. Drucker, D.C. and Rice, J.R. (1970), "Plastic deformation in brittle and ductile fracture", Eng. Fract. Mech., 1(4), 577-602. https://doi.org/10.1016/0013-7944(70)90001-9
  6. Ferahi, M. and Meguid, S.A. (1998), "A novel approach for evaluating weight functions for cracks in finite bodies", Eng. Fract. Mech., 59(3), 343-352. https://doi.org/10.1016/S0013-7944(97)00091-X
  7. Fett, T. (2001), "Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions", Eng. Fract. Mech., 68, 1119-1136. https://doi.org/10.1016/S0013-7944(01)00025-X
  8. Fett, T. and Bahr, H.A. (1999), "Mode I stress intensity factors and weight functions for short plates under different boundary conditions", Eng. Fract. Mech., 62, 593-606. https://doi.org/10.1016/S0013-7944(99)00014-4
  9. Fett, T., Pham, V.B. and Bahr, H.A. (2004), "Weight functions for kinked semi-infinite cracks", Eng. Fract. Mech., 71, 1987-1995. https://doi.org/10.1016/j.engfracmech.2003.10.003
  10. Ghajar, R. and Googarchin, H.S. (2012), "General point load weight function for semi-elliptical crack in finite thickness plates", Eng. Fract. Mech., 109, 33-44.
  11. Glinka, G. and Shen, G. (1991), "Universal features of weight functions for cracks in modeI", Eng. Fract. Mech., 40(6), 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
  12. Jankowiak, A., Jakubczak, H. and Glinka, G. (2009), "Fatigue crack growth analysis using 2-D weight function", Int. J. Fatigue, 31, 1921-1927. https://doi.org/10.1016/j.ijfatigue.2009.02.037
  13. Jones, I.S. and Rothwell, G. (2001), "Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinder", Eng. Fract. Mech., 68, 434-454.
  14. Kim, J.H., Hong, S.G. and Lee, S.B. (2003), "Evaluation of stress intensity factor for a partially patched crack using an approximate weight function", KSME Int. J., 17(11), 1659-1664. https://doi.org/10.1007/BF02983595
  15. Lee, H.Y. and Hong, C.S. (1996), "A new weight function approach using indirect boundary integral method", Eng. Fract. Mech., 53(6), 957-974. https://doi.org/10.1016/0013-7944(95)00179-4
  16. Li, C., Weng, G.J., Duan, Z. and Zou, Z. (2001), "Dynamic stress intensity factor of a functionally graded material under antiplane shear loading", Acta Mechanica, 149, 1-10. https://doi.org/10.1007/BF01261659
  17. Lira-vergara, E. and Rubio-gonzalez, C. (2005), "Dynamic stress intensity factor of interfacial finite cracks in orthotropic materials", Int. J. Fract., 135, 285-309. https://doi.org/10.1007/s10704-005-4292-1
  18. Mattoni, M.A. and Zok, F.W. (2003), "A method for determining the stress intensity factor of a single edgenotched tensile specimen", Int. J. Fract., 119, L3-L8. https://doi.org/10.1023/A:1023989612347
  19. Nabavi, S.M. and Ghajar, R. (2001), "Analysis of thermal stress intensity factors for cracked cylinders using weight function method", Int. J. Eng. Sci., 48, 1811-1823.
  20. Ng, S.W. and Lau, K.J. (1999), "A new weight function expression for through cracks", Eng. Fract. Mech., 64, 515-537. https://doi.org/10.1016/S0013-7944(99)00095-8
  21. Niu, X. and Glinka, G. (1990), "Weight functions for edge and surface semi-elliptical cracks in flat plates and plates with corners", Eng. Fract. Mech., 36(3), 459-475. https://doi.org/10.1016/0013-7944(90)90293-P
  22. Niu, X. and Glinka, G. (1987), "On the "limitations of the Petroski-Achenbach crack opening displacement approximation for the calculation of weight function-do they really exist?", Eng. Fract. Mech., 26(5), 701-706. https://doi.org/10.1016/0013-7944(87)90135-4
  23. Pastrama, S.D. and Castro, P.M.S.T. (1998), "Weight functions from finite element displacements", Int. J. Press. Ves. Pip., 75, 229-236. https://doi.org/10.1016/S0308-0161(98)00029-5
  24. Petroski, H.Y. and Achenbach, F.D. (1978), "Computation of the weight function from a stress intensity factor", Eng. Fract. Mech., 10, 257-266. https://doi.org/10.1016/0013-7944(78)90009-7
  25. Rice, J.R. (1968a), "The elastic-plastic mechanics of crack extension", Int. J. Fract. Mech., 4, 41-49.
  26. Rice, J.R. (1972), "Some remarks on elastic crack-tip stress field", Int. J. Solid. Struct., 8, 751-758. https://doi.org/10.1016/0020-7683(72)90040-6
  27. Rice, J.R. (1968b), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35, 379-386. https://doi.org/10.1115/1.3601206
  28. Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power law hardening material", J. Mech. Phys. Solid., 16, 1-12. https://doi.org/10.1016/0022-5096(68)90013-6
  29. Rice, J.R. (1974), "Limitations to the small-scale yielding approximation for crack tip plasticity", J. Mech. Phys. Solid., 22, 17-26. https://doi.org/10.1016/0022-5096(74)90010-6
  30. Richardson, L.F. (1911), "The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam", Phil. Tran. Roy. Soc. Londondon A, 210, 307-357. https://doi.org/10.1098/rsta.1911.0009
  31. Rubio-gonzalez, C. and Mason, J.J. (2001), "Green's functions for the stress intensity factor evolution in finite cracks in orthotropic materials", Int. J. Fract., 108, 317-336. https://doi.org/10.1023/A:1011099515888
  32. Sha G.T. and Yang C.T. (1986), "Weight functions of radial cracks emanating from a circular hole in a plate", Fract. Mech., Seventh Volume, Eds. J.H. Underwood et al., ASTM STP, 905, 573-600.
  33. Shahani, A.R. and Nabavi, S.M. (2006), "Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress", Int. J. Fatigue, 28, 926-933. https://doi.org/10.1016/j.ijfatigue.2005.09.011
  34. Shen, G., Plumtree, A. and Glinka, G. (1991), "Weight function for the surface point of semi-elliptical surface crack in a finite thickness plate", Eng. Fract. Mech., 40(1), 167-176. https://doi.org/10.1016/0013-7944(91)90136-O
  35. Shen, G. and Glinka, G. (1991), "Determination of weight functions from reference stress intensity factors", Theor. Appl. Fract. Mech., 15(2), 237-245. https://doi.org/10.1016/0167-8442(91)90022-C
  36. Tada, H., Paris, P.C. and Irwin, G. (2000), The Stress Analysis of Cracks Handbook, Paris Production Incorporated, St. Louis, Missouri.
  37. Yang, W.Y., Cao, W., Chung, T.S. and Morris J. (2005), Applied numerical methods using MATLAB, John Wiley & Sons, Inc., Hoboken, New Jersey.
  38. Zheng, X.J., Glinka, G. and Dubey, R.N. (1995), "Calculation of stress intensity factors for semielliptical cracks in a thick-wall cylinder", lnt. J. Press. Ves. Pip., 62, 249-258. https://doi.org/10.1016/0308-0161(94)00017-D

Cited by

  1. Improvement in the numerical method for integrating weight function of pre-cracked specimen vol.154, 2016, https://doi.org/10.1016/j.engfracmech.2015.12.036
  2. Approximate Stress Intensity Factors for a Semi-Circular Crack in an Arbitrary Structure under Arbitrary Mode I Loading 2018, https://doi.org/10.1016/j.tafmec.2018.01.007