References
- Aaghaakouchak, A.A., Dharmavasan, S. and Glinka, G. (1990), "Stress intensity factors for cracks in structures under different boundary conditions", Eng. Fract. Mech., 37(5), 1125-1137. https://doi.org/10.1016/0013-7944(90)90033-D
- Anderson, T.L. and Glinka, G. (2006), "A closed-form method for integrating weight functions for partthrough cracks subject to Mode I loading", Eng. Fract. Mech., 73, 2153-216. https://doi.org/10.1016/j.engfracmech.2006.04.027
- Bueckner, H.F. (1970), "A novel principle for the computation of stress intensity factors", Zeitschrift fur angewandte Mathematik und Mechanik, 50(9), 529-546.
- Das, S., Prasad, R. and Mukhopadhyay, S. (2011), "Stress intensity factor of an edge crack in composite media", Int. J. Fract., 172, 201-207. https://doi.org/10.1007/s10704-011-9652-4
- Drucker, D.C. and Rice, J.R. (1970), "Plastic deformation in brittle and ductile fracture", Eng. Fract. Mech., 1(4), 577-602. https://doi.org/10.1016/0013-7944(70)90001-9
- Ferahi, M. and Meguid, S.A. (1998), "A novel approach for evaluating weight functions for cracks in finite bodies", Eng. Fract. Mech., 59(3), 343-352. https://doi.org/10.1016/S0013-7944(97)00091-X
- Fett, T. (2001), "Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions", Eng. Fract. Mech., 68, 1119-1136. https://doi.org/10.1016/S0013-7944(01)00025-X
- Fett, T. and Bahr, H.A. (1999), "Mode I stress intensity factors and weight functions for short plates under different boundary conditions", Eng. Fract. Mech., 62, 593-606. https://doi.org/10.1016/S0013-7944(99)00014-4
- Fett, T., Pham, V.B. and Bahr, H.A. (2004), "Weight functions for kinked semi-infinite cracks", Eng. Fract. Mech., 71, 1987-1995. https://doi.org/10.1016/j.engfracmech.2003.10.003
- Ghajar, R. and Googarchin, H.S. (2012), "General point load weight function for semi-elliptical crack in finite thickness plates", Eng. Fract. Mech., 109, 33-44.
- Glinka, G. and Shen, G. (1991), "Universal features of weight functions for cracks in modeI", Eng. Fract. Mech., 40(6), 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
- Jankowiak, A., Jakubczak, H. and Glinka, G. (2009), "Fatigue crack growth analysis using 2-D weight function", Int. J. Fatigue, 31, 1921-1927. https://doi.org/10.1016/j.ijfatigue.2009.02.037
- Jones, I.S. and Rothwell, G. (2001), "Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinder", Eng. Fract. Mech., 68, 434-454.
- Kim, J.H., Hong, S.G. and Lee, S.B. (2003), "Evaluation of stress intensity factor for a partially patched crack using an approximate weight function", KSME Int. J., 17(11), 1659-1664. https://doi.org/10.1007/BF02983595
- Lee, H.Y. and Hong, C.S. (1996), "A new weight function approach using indirect boundary integral method", Eng. Fract. Mech., 53(6), 957-974. https://doi.org/10.1016/0013-7944(95)00179-4
- Li, C., Weng, G.J., Duan, Z. and Zou, Z. (2001), "Dynamic stress intensity factor of a functionally graded material under antiplane shear loading", Acta Mechanica, 149, 1-10. https://doi.org/10.1007/BF01261659
- Lira-vergara, E. and Rubio-gonzalez, C. (2005), "Dynamic stress intensity factor of interfacial finite cracks in orthotropic materials", Int. J. Fract., 135, 285-309. https://doi.org/10.1007/s10704-005-4292-1
- Mattoni, M.A. and Zok, F.W. (2003), "A method for determining the stress intensity factor of a single edgenotched tensile specimen", Int. J. Fract., 119, L3-L8. https://doi.org/10.1023/A:1023989612347
- Nabavi, S.M. and Ghajar, R. (2001), "Analysis of thermal stress intensity factors for cracked cylinders using weight function method", Int. J. Eng. Sci., 48, 1811-1823.
- Ng, S.W. and Lau, K.J. (1999), "A new weight function expression for through cracks", Eng. Fract. Mech., 64, 515-537. https://doi.org/10.1016/S0013-7944(99)00095-8
- Niu, X. and Glinka, G. (1990), "Weight functions for edge and surface semi-elliptical cracks in flat plates and plates with corners", Eng. Fract. Mech., 36(3), 459-475. https://doi.org/10.1016/0013-7944(90)90293-P
- Niu, X. and Glinka, G. (1987), "On the "limitations of the Petroski-Achenbach crack opening displacement approximation for the calculation of weight function-do they really exist?", Eng. Fract. Mech., 26(5), 701-706. https://doi.org/10.1016/0013-7944(87)90135-4
- Pastrama, S.D. and Castro, P.M.S.T. (1998), "Weight functions from finite element displacements", Int. J. Press. Ves. Pip., 75, 229-236. https://doi.org/10.1016/S0308-0161(98)00029-5
- Petroski, H.Y. and Achenbach, F.D. (1978), "Computation of the weight function from a stress intensity factor", Eng. Fract. Mech., 10, 257-266. https://doi.org/10.1016/0013-7944(78)90009-7
- Rice, J.R. (1968a), "The elastic-plastic mechanics of crack extension", Int. J. Fract. Mech., 4, 41-49.
- Rice, J.R. (1972), "Some remarks on elastic crack-tip stress field", Int. J. Solid. Struct., 8, 751-758. https://doi.org/10.1016/0020-7683(72)90040-6
- Rice, J.R. (1968b), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35, 379-386. https://doi.org/10.1115/1.3601206
- Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power law hardening material", J. Mech. Phys. Solid., 16, 1-12. https://doi.org/10.1016/0022-5096(68)90013-6
- Rice, J.R. (1974), "Limitations to the small-scale yielding approximation for crack tip plasticity", J. Mech. Phys. Solid., 22, 17-26. https://doi.org/10.1016/0022-5096(74)90010-6
- Richardson, L.F. (1911), "The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam", Phil. Tran. Roy. Soc. Londondon A, 210, 307-357. https://doi.org/10.1098/rsta.1911.0009
- Rubio-gonzalez, C. and Mason, J.J. (2001), "Green's functions for the stress intensity factor evolution in finite cracks in orthotropic materials", Int. J. Fract., 108, 317-336. https://doi.org/10.1023/A:1011099515888
- Sha G.T. and Yang C.T. (1986), "Weight functions of radial cracks emanating from a circular hole in a plate", Fract. Mech., Seventh Volume, Eds. J.H. Underwood et al., ASTM STP, 905, 573-600.
- Shahani, A.R. and Nabavi, S.M. (2006), "Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress", Int. J. Fatigue, 28, 926-933. https://doi.org/10.1016/j.ijfatigue.2005.09.011
- Shen, G., Plumtree, A. and Glinka, G. (1991), "Weight function for the surface point of semi-elliptical surface crack in a finite thickness plate", Eng. Fract. Mech., 40(1), 167-176. https://doi.org/10.1016/0013-7944(91)90136-O
- Shen, G. and Glinka, G. (1991), "Determination of weight functions from reference stress intensity factors", Theor. Appl. Fract. Mech., 15(2), 237-245. https://doi.org/10.1016/0167-8442(91)90022-C
- Tada, H., Paris, P.C. and Irwin, G. (2000), The Stress Analysis of Cracks Handbook, Paris Production Incorporated, St. Louis, Missouri.
- Yang, W.Y., Cao, W., Chung, T.S. and Morris J. (2005), Applied numerical methods using MATLAB, John Wiley & Sons, Inc., Hoboken, New Jersey.
- Zheng, X.J., Glinka, G. and Dubey, R.N. (1995), "Calculation of stress intensity factors for semielliptical cracks in a thick-wall cylinder", lnt. J. Press. Ves. Pip., 62, 249-258. https://doi.org/10.1016/0308-0161(94)00017-D
Cited by
- Improvement in the numerical method for integrating weight function of pre-cracked specimen vol.154, 2016, https://doi.org/10.1016/j.engfracmech.2015.12.036
- Approximate Stress Intensity Factors for a Semi-Circular Crack in an Arbitrary Structure under Arbitrary Mode I Loading 2018, https://doi.org/10.1016/j.tafmec.2018.01.007