References
- Baud, S. and Velex, P. (2002), "Static and dynamic tooth loading in spur and helical geared systems-experiments and model validation", J. Mech. Des., 124, 334-346. https://doi.org/10.1115/1.1462044
- Chen, Y.C. and Tsay, C.B. (2001), "Bearing contact of a helical gear pair with involute teeth pinion and modified circular-arc teeth gear", Proc. IMechE, Part C: J. Mech. Eng. Sci., 215, 1175-1187. https://doi.org/10.1177/095440620121500104
- Harris, T. A. (2001), Rolling Bearing Analysis, 4th Edition, John Wiley & Sons, Inc., New York, NY, USA.
- Hedlund, J. and Lehtovaara, A. (2007), "Modeling of helical gear contact with tooth deflection", Tribol. Int., 40, 613-619. https://doi.org/10.1016/j.triboint.2005.11.004
- Hotait, M.A., Talbot, D. and Kahraman, A. (2007), "An investigation of the influence of shaft misalignments on bending stresses of helical gear with lead crown", Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, September.
- Kar, C. and Mohanty, A.R. (2008), "Determination of time-varying contact length, friction force, torque and forces at the bearings in a helical gear system", J. Sound Vib., 309, 307-319. https://doi.org/10.1016/j.jsv.2006.09.031
- Kolivand, M. and Kahraman, A. (2011), "A general approach to locate instantaneous contact lines of gears using surface of roll angle", J. Mech. Des., 133, 014503. https://doi.org/10.1115/1.4003142
- Litvin, F.L., Lu, J., Townsend, D.P. and Howkins, M. (1999), "Computerized simulation of meshing of conventional helical involute gears and modification of geometry", Mech. Mach. Theory, 34, 123-147. https://doi.org/10.1016/S0094-114X(98)00013-5
- Litvin, F.L., Fuentes, A., Gonzalez-Perez, I., Carvenali, L., Kawasaki, K. and Handschuh, R.F. (2003), "Modified involute helical gears: computerized design, simulation of meshing and stress analysis", Comput. Meth. Appl. M, 192, 3619-3655. https://doi.org/10.1016/S0045-7825(03)00367-0
- Litvin, F.L. and Fuentes, A. (2004), Gear Geometry and Applied Theory, 2nd Edition, Cambridge University Press, Cambridge, England, UK.
- Litvin, F.L., Gonzalez-Perez, I., Fuentes, A., Vecchiato, D. and Sep, T.M. (2005), "Generalized concept of meshing and contact of involute crossed helical gears and its application", Comput. Method Appl. M, 194, 3710-3745. https://doi.org/10.1016/j.cma.2004.09.009
- Litvin, F.L., Gonzalez-Perez, I., Fuentes, A., Hayasaka, K. and Yukishima, K. (2005), "Topology of modified surfaces of involute helical gears with line contact developed for improvement of bearing contact, reduction of transmission errors, and stress analysis", Math. Comput. Model., 42, 1063-1078. https://doi.org/10.1016/j.mcm.2004.10.028
- Miyoshi, Y., Tobisawa, K. and Saiki, K. (2007), "Composite analysis method of tooth contact load distribution of helical gear", Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, September.
- Vinayak, H. and Singh, R. (1998), "Multi-body dynamics and modal analysis of compliant gear bodies", J. Sound Vib., 210, 171-214. https://doi.org/10.1006/jsvi.1997.1298
- Wink, C.H. and Serpa, A.L. (2008), "Performance assessment of solution methods for load distribution problem of gear teeth", Mech. Mach. Theory, 43, 80-94. https://doi.org/10.1016/j.mechmachtheory.2006.12.010
- Wang, J., Lim, T.C. and Ding, Y. (2012), "Multi-tooth contact behavior of helical gear applying modified meshing equation", Proc. IMechE, Part C: J. Mech. Eng. Sci., 227(1), 146-160.
- Wu, S.H. and Tsai, S.J. (2009), "Contact stress analysis of skew conical involute gear drives in approximate line contact", Mech. Mach. Theory, 44, 1658-1676. https://doi.org/10.1016/j.mechmachtheory.2009.01.010
- Zhang, Y. and Fang, Z. (1999), "Analysis of tooth contact and load distribution of helical gears with crossed axes", Mech. Mach. Theory, 34, 41-57. https://doi.org/10.1016/S0094-114X(98)00006-8
Cited by
- Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure vol.63, pp.5, 2015, https://doi.org/10.12989/sem.2017.63.5.691